24 resultados para glucose intake
em Cambridge University Engineering Department Publications Database
Resumo:
The flow typical of that occurring over the windward lip of an aero engine intake operating in a crosswind has been reproduced on a 2D lip. The uncontrolled boundary layer undergoes a laminar separation at the leading edge of the lip. It has been shown that a minimum size of boundary layer trip, positioned upstream of the separation location, is required to enable the flow to remain attached around the leading edge. A turbulent separation then occurs in the diffuser. Larger diameter trips promote earlier diffuser separation. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
The hydrodynamic properties of free surface vortices at hydraulic intakes were investigated. Based on the axisymmetric Navier-Stokes equations and empirical assumptions, two sets of formulations for the velocity distributions and the free surface profiles are proposed and validated against measurements available in the literature. Compared with previous formulae, the modifications based on Mih's formula are found to greatly improve the agreement with the experimental data. Physical model tests were also conducted to study the intake vortex of the Xiluodu hydroelectric project in China. The proposed velocity distribution formula was applied to the solid boundary as considered by the method of images. A good agreement was again observed between the prediction and the measurements. © 2011 International Association for Hydro-Environment Engineering and Research.
Resumo:
BACKGROUND: Carbon nanotube (CNT) fiber directly spun from an aerogel has a unique, well-aligned nanostructure (nano-pore and nano-brush), and thus provides high electro-catalytic activity and strong interaction with glucose oxidase enzyme. It shows great potential as a microelectrode for electrochemical biosensors. RESULTS: Cyclic voltammogram results indicate that post-synthesis treatments have great influence on the electrocatalytic activity of CNT fibers. Raman spectroscopy and electrical conductivity tests suggest that fibers annealed at 250 °C remove most of the impurities without damaging the graphite-like structure. This leads to a nano-porous morphology on the surface and the highest conductivity value (1.1 × 10 5 S m -1). Two CNT fiber microelectrode designs were applied to enhance their electron transfer behaviour, and it was found that a design using a 30 nm gold coating is able to linearly cover human physiological glucose level between 2 and 30 mmol L -1. The design also leads to a low detection limit of 25 μmol L -1. CONCLUSIONS: The high performance of CNT fibers not only offers exceptional mechanical and electrical properties, but also provides a large surface area and electron transfer pathway. They consequently make excellent bioactive microelectrodes for glucose biosensing, especially for potential use in implantable devices. © 2011 Society of Chemical Industry.