181 resultados para geometric arrays

em Cambridge University Engineering Department Publications Database


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple and general design procedure is presented for the polarisation diversity of arbitrary conformal arrays; this procedure is based on the mathematical framework of geometric algebra and can be solved optimally using convex optimisation. Aside from being simpler and more direct than other derivations in the literature, this derivation is also entirely general in that it expresses the transformations in terms of rotors in geometric algebra which can easily be formulated for any arbitrary conformal array geometry. Convex optimisation has a number of advantages; solvers are widespread and freely available, the process generally requires a small number of iterations and a wide variety of constraints can be readily incorporated. The study outlines a two-step approach for addressing polarisation diversity in arbitrary conformal arrays: first, the authors obtain the array polarisation patterns using geometric algebra and secondly use a convex optimisation approach to find the optimal weights for the polarisation diversity problem. The versatility of this approach is illustrated via simulations of a 7×10 cylindrical conformal array. © 2012 The Institution of Engineering and Technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the authors describe two-dimensional direction finding and signal polarisation estimation from a cylindrical conformal array consisting of directional and polarised antenna elements. Firstly, a simple and general transformation procedure, based on the mathematical framework of geometric algebra, is presented for arbitrary conformal arrays with polarised and directional antennas. Subsequently, the authors utilise the symmetry of cylindrical arrays to estimate signal parameters via rotational invariance techniques. The authors show how to iteratively estimate the azimuth and elevation angles of the incident signal, as well as its polarisation. To illustrate the versatility of this method, the results of simulations on a 3×4 cylindrical conformal array are shown and discussed. © 2012 The Institution of Engineering and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a quantum dot sensitized solar cell (QDSSC) based on ZnO nanorod coated vertically aligned carbon nanotubes (VACNTs). Electrochemical impedance spectroscopy shows that the electron lifetime for the device based on VACNT/ZnO/CdSe is longer than that for a device based on ZnO/CdSe, indicating that the charge recombination at the interface is reduced by the presence of the VACNTs. Due to the increased surface area and longer electron lifetime, a power conversion efficiency of 1.46% is achieved for the VACNT/ZnO/CdSe devices under an illumination of one Sun (AM 1.5G, 100 mW/cm2). © 2010 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a beamforming correction for identifying dipole sources by means of phased microphone array measurements is presented and implemented numerically and experimentally. Conventional beamforming techniques, which are developed for monopole sources, can lead to significant errors when applied to reconstruct dipole sources. A previous correction technique to microphone signals is extended to account for both source location and source power for two-dimensional microphone arrays. The new dipole-beamforming algorithm is developed by modifying the basic source definition used for beamforming. This technique improves the previous signal correction method and yields a beamformer applicable to sources which are suspected to be dipole in nature. Numerical simulations are performed, which validate the capability of this beamformer to recover ideal dipole sources. The beamforming correction is applied to the identification of realistic aeolian-tone dipoles and shows an improvement of array performance on estimating dipole source powers. © 2008 Acoustical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A turbulent boundary-layer flow over a rough wall generates a dipole sound field as the near-field hydrodynamic disturbances in the turbulent boundary-layer scatter into radiated sound at small surface irregularities. In this paper, phased microphone arrays are applied to the measurement and simulation of surface roughness noise. The radiated sound from two rough plates and one smooth plate in an open jet is measured at three streamwise locations, and the beamforming source maps demonstrate the dipole directivity. Higher source strengths can be observed on the rough plates which also enhance the trailing-edge noise. A prediction scheme in previous theoretical work is used to describe the strength of a distribution of incoherent dipoles and to simulate the sound detected by the microphone array. Source maps of measurement and simulation exhibit satisfactory similarities in both source pattern and source strength, which confirms the dipole nature and the predicted magnitude of roughness noise. However, the simulations underestimate the streamwise gradient of the source strengths and overestimate the source strengths at the highest frequency. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a method of rapidly producing computer-generated holograms that exhibit geometric occlusion in the reconstructed image. Conceptually, a bundle of rays is shot from every hologram sample into the object volume.We use z buffering to find the nearest intersecting object point for every ray and add its complex field contribution to the corresponding hologram sample. Each hologram sample belongs to an independent operation, allowing us to exploit the parallel computing capability of modern programmable graphics processing units (GPUs). Unlike algorithms that use points or planar segments as the basis for constructing the hologram, our algorithm's complexity is dependent on fixed system parameters, such as the number of ray-casting operations, and can therefore handle complicated models more efficiently. The finite number of hologram pixels is, in effect, a windowing function, and from analyzing the Wigner distribution function of windowed free-space transfer function we find an upper limit on the cone angle of the ray bundle. Experimentally, we found that an angular sampling distance of 0:01' for a 2:66' cone angle produces acceptable reconstruction quality. © 2009 Optical Society of America.