2 resultados para genre movies

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe our work on developing a speech recognition system for multi-genre media archives. The high diversity of the data makes this a challenging recognition task, which may benefit from systems trained on a combination of in-domain and out-of-domain data. Working with tandem HMMs, we present Multi-level Adaptive Networks (MLAN), a novel technique for incorporating information from out-of-domain posterior features using deep neural networks. We show that it provides a substantial reduction in WER over other systems, with relative WER reductions of 15% over a PLP baseline, 9% over in-domain tandem features and 8% over the best out-of-domain tandem features. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based on Gibbs sampling and one based on variational Bayes. Importantly, these algorithms may be implemented in the factorization of very large matrices with missing entries. The model is evaluated on a collaborative filtering task, where users have rated a collection of movies and the system is asked to predict their ratings for other movies. The Netflix data set is used for evaluation, which consists of around 100 million ratings. Using root mean-squared error (RMSE) as an evaluation metric, results show that the suggested model outperforms alternative factorization techniques. Results also show how Gibbs sampling outperforms variational Bayes on this task, despite the large number of ratings and model parameters. Matlab implementations of the proposed algorithms are available from cogsys.imm.dtu.dk/ordinalmatrixfactorization.