200 resultados para general rotational surfaces

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ultrasmoothness of diamond-like carbon coatings is explained by an atomistic/continuum multiscale model. At the atomic scale, carbon ion impacts induce downhill currents in the top layer of a growing film. At the continuum scale, these currents cause a rapid smoothing of initially rough substrates by erosion of hills into neighboring hollows. The predicted surface evolution is in excellent agreement with atomic force microscopy measurements. This mechanism is general, as shown by similar simulations for amorphous silicon. It explains the recently reported smoothing of multilayers and amorphous transition metal oxide films and underlines the general importance of impact-induced downhill currents for ion deposition, polishing, and nanopattering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of recovering the 3D shape of a surface of revolution from a single uncalibrated perspective view. The algorithm introduced here makes use of the invariant properties of a surface of revolution and its silhouette to locate the image of the revolution axis, and to calibrate the focal length of the camera. The image is then normalized and rectified such that the resulting silhouette exhibits bilateral symmetry. Such a rectification leads to a simpler differential analysis of the silhouette, and yields a simple equation for depth recovery. It is shown that under a general camera configuration, there will be a 2-parameter family of solutions for the reconstruction. The first parameter corresponds to an unknown scale, whereas the second one corresponds to an unknown attitude of the object. By identifying the image of a latitude circle, the ambiguity due to the unknown attitude can be resolved. Experimental results on real images are presented, which demonstrate the quality of the reconstruction. © 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical approach for calculating the movement of liquid water following deposition onto a turbomachine rotor blade is described. Such a situation can occur during operation of an aero-engine in rain. The equation of motion of the deposited water is developed on an arbitrarily oriented plane triangular surface facet. By dividing the blade surface into a large number of facets and calculating the water trajectory over each one crossed in turn, the overall trajectory can be constructed. Apart from the centrifugal and Coriolis inertia effects, the forces acting on the water arise from the blade surface friction, and the aerodynamic shear and pressure gradient. Non- dimensionalisation of the equations of motion provides considerable insight and a detailed study of water flow on a flat rotating plate set at different stagger angles demonstrates the paramount importance of blade surface friction. The extreme cases of low and high blade friction are examined and it is concluded that the latter (which allows considerable mathematical generalisation) is the most likely in practice. It is also shown that the aerodynamic shear force, but not the pressure force, may influence the water motion. Calculations of water movement on a low-speed compressor blade and the fan blade of a high bypass ratio aero-engine suggest that in low rotational speed situations most of the deposited water is centrifuged rapidly to the blade tip region. Copyright © 2006 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the pioneering work of Gibson in 1950, Shape- From-Texture has been considered by researchers as a hard problem, mainly due to restrictive assumptions which often limit its applicability. We assume a very general stochastic homogeneity and perspective camera model, for both deterministic and stochastic textures. A multi-scale distortion is efficiently estimated with a previously presented method based on Fourier analysis and Gabor filters. The novel 3D reconstruction method that we propose applies to general shapes, and includes non-developable and extensive surfaces. Our algorithm is accurate, robust and compares favorably to the present state of the art of Shape-From- Texture. Results show its application to non-invasively study shape changes with laid-on textures, while rendering and retexturing of cloth is suggested for future work. © 2009 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Riblets are small surface protrusions aligned with the flow direction, which confer an anisotropic roughness to the surface [6]. We have recently reported that the transitional-roughness effect in riblets, which limits their performance, is due to a Kelvin–Helmholtz-like instability of the overlying mean flow [7]. According to our DNSs, the instability sets on as the Reynolds number based on the roughness size of the riblets increases, and coherent, elongated spanwise vortices begin to develop immediately above the riblet tips, causing the degradation of the drag-reduction effect. This is a very novel concept, since prior studies had proposed that the degradation was due to the interaction of riblets with the flow as independent units, either to the lodging of quasi-streamwise vortices in the surface grooves [2] or to the shedding of secondary streamwise vorticity at the riblet peaks [9]. We have proposed an approximate inviscid analysis for the instability, in which the presence of riblets is modelled through an average boundary condition for an overlying, spanwise-independent mean flow. This simplification lacks the accuracy of an exact analysis [4], but in turn applies to riblet surfaces in general. Our analysis succeeds in predicting the riblet size for the onset of the instability, while qualitatively reproducing the wavelengths and shapes of the spanwise structures observed in the DNSs. The analysis also connects the observations with the Kelvin–Helmholtz instability of mixing layers. The fundamental riblet length scale for the onset of the instability is a ‘penetration length,’ which reflects how easily the perturbation flow moves through the riblet grooves. This result is in excellent agreement with the available experimental evidence, and has enabled the identification of the key geometric parameters to delay the breakdown. Although the appearance of elongated spanwise vortices was unexpected in the case of riblets, similar phenomena had already been observed over other rough [3], porous [1] and permeable [11] surfaces, as well as over plant [5,14] and urban [12] canopies, both in the transitional and in the fully-rough regimes. However, the theoretical analyses that support the connection of these observations with the Kelvin–Helmholtz instability are somewhat scarce [7, 11, 13]. It has been recently proposed that Kelvin–Helmholtz-like instabilities are a dominant feature common to “obstructed” shear flows [8]. It is interesting that the instability does not require an inflection point to develop, as is often claimed in the literature. The Kelvin-Helmholtz rollers are rather triggered by the apparent wall-normal-transpiration ability of the flow at the plane immediately above the obstructing elements [7,11]. Although both conditions are generally complementary, if wall-normal transpiration is not present the spanwise vortices may not develop, even if an inflection point exists within the roughness [10]. REFERENCES [1] Breugem, W. P., Boersma, B. J. & Uittenbogaard, R. E. 2006 J. Fluid Mech. 562, 35–72. [2] Choi, H., Moin, P. & Kim, J. 1993 J. Fluid Mech. 255, 503–539. [3] Coceal, O., Dobre, A., Thomas, T. G. & Belcher, S. E. 2007 J. Fluid Mech. 589, 375–409. [4] Ehrenstein, U. 2009 Phys. Fluids 8, 3194–3196. [5] Finnigan, J. 2000 Ann. Rev. Fluid Mech. 32, 519–571. [6] Garcia-Mayoral, R. & Jimenez, J. 2011 Phil. Trans. R. Soc. A 369, 1412–1427. [7] Garcia-Mayoral, R. & Jimenez, J. 2011 J. Fluid Mech. doi: 10.1017/jfm.2011.114. [8] Ghisalberti, M. 2009 J. Fluid Mech. 641, 51–61. [9] Goldstein, D. B. & Tuan, T. C. 1998 J. Fluid Mech. 363, 115–151. [10] Hahn, S., Je, J. & Choi, H. 2002 J. Fluid Mech. 450, 259–285. [11] Jimenez, J., Uhlman, M., Pinelli, A. & G., K. 2001 J. Fluid Mech. 442, 89–117. [12] Letzel, M. O., Krane, M. & Raasch, S. 2008 Atmos. Environ. 42, 8770–8784. [13] Py, C., de Langre, E. & Moulia, B. 2006 J. Fluid Mech. 568, 425–449. [14] Raupach, M. R., Finnigan, J. & Brunet, Y. 1996 Boundary-Layer Meteorol. 78, 351–382.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dense arrays of high aspect ratio Si micro-pyramids have been formed by cumulative high intensity laser irradiation of doped Si wafers in an SF6 environment. A comparative study using nanosecond (XeCl, 308 nm) and femtosecond (Ti: Sapphire, 800 nm and KrF, 248 nm) laser pulses has been performed in this work. The influence of pulse duration and ambient gas pressure (SF6) is also presented. Scanning electron microscopy has shown that upon laser irradiation conical features appear on the Si surface in a rather homogenous distribution and with a spontaneous self alignment into arrays. Their lowest tip diameter is 800 nm; while their height reaches up to 90 mum. Secondary tip decoration appears on the surface of the formed spikes. Areas of 2 X 2 mm(2) covered with Si cones have been tested as cold cathode field emitters. After several conditioning cycles, the field emission threshold for the studied Si tips is as low as 2 V/mum, with an emission current of 10(-3) A/cm(2) at 4 V/mum. Even though these structures have smaller aspect ratios than good quality carbon nanotubes, their field emission properties are similar. The simple and direct formation of field emission Si arrays over small pre-selected areas by laser irradiation could lead to a novel approach for the development of electron sources. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method for obtaining information on the charge density of an immersed surface is presented. The technique uses focused ultrasound to excite oscillatory fluid motion in the plane of the solid-liquid interface, over a localised area. The displacement current (resulting from the motion of fluid-borne ions in the outer double-layer) is detected by electrodes in the liquid. The method is demonstrated as a means for monitoring protein adsorption, and for monitoring interactions between two different proteins. A second electrokinetic effect at the interface is identified, isolated from the first, and shown to provide additional information on the compressibility and charge density of the double-layer. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador: