206 resultados para gated-controlled lateral phototransistor

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel CMOS compatible lateral thyristor is proposed in this paper. Its thyristor conduction is fully controlled by a p-MOS gate. Loss of MOS control due to parasitic latch-up has been eliminated and triggering of the main thyristor at lower forward current achieved. The device operation has been verified by 2-D numerical simulations and experimental fabrication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

MBE regrowth on patterned np-GaAs wafers has been used to fabricate GaAs/AlGaAs double barrier resonant tunnel diodes with a side-gate in the plane of the quantum well. The physical diameters vary from 1 to 20 μm. For a nominally 1 μm diameter diode the peak current is reduced by more than 95% at a side-gate voltage of -2 V at 1.5 K, which we estimate corresponds to an active tunnel region diameter of 75 nm ± 10 nm. At high gate biases additional structure appears in the conductance data. Differential I-V measurements show a linear dependence of the spacing of subsidiary peaks on gate bias indicating lateral quantum confinement. © 1996 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the fabrication of lateral emitters using carbon nanotubes (CNTs) grown via plasma enhanced chemical vapour deposition (PECVD). Carbon nanotubes are dispersed randomly onto a substrate, mapped, contacted with metal, and by etching the substrate, a suspended lateral emitter structure is formed. Field emission measurements from the lateral emitters show a turn-on voltage as low as 12 V. The emission characteristics showed good fits to the Fowler-Nordheim (FN) theory indicating that conventional field emission was indeed observed from these devices. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the fabrication and field emission of carbon nanotube lateral field emitters. Due to its high aspect ratio and mechanical strength, we use vertically aligned multi-wall carbon nanotubes prepared by plasma-enhanced chemical vapour deposition as cathodes, which makes the fabrication of cantilever type lateral field emitters possible. The emission characteristics show that the field emission initiates at 11-17 V. The device has high geometrical enhancement factors (9.3 × 106 cm-1) compared to standard Spindt tips, which may be due to increased field concentration at the nanotube tip and the close proximity of the anode (<1 μm). The relative ease of fabrication compared to vertical field emitters and enhanced field emission characteristics observed makes the carbon nanotube lateral field emitter a good candidate for future integrated nano-electronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the production of integrated-gate nanocathodes which have a single carbon nanotube or silicon nanowire/whisker per gate aperture. The fabrication is based on a technologically scalable, self-alignment process in which a single lithographic step is used to define the gate, insulator, and emitter. The nanotube-based gated nanocathode array has a low turn-on voltage of 25 V and a peak current of 5 μA at 46 V, with a gate current of 10 nA (i.e., 99% transparency). These low operating voltage cathodes are potentially useful as electron sources for field emission displays or miniaturizing electron-based instrumentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MEMS resonators fabricated in silicon-on-insulator (SOI) technology must be clamped to the substrate via anchoring stems connected either from within the resonator or through the sides, with the side-clamped solution often employed due to manufacturing constraints. This paper examines the effect of two types of commonly used side-clamped, anchoring-stem geometries on the quality factor of three different laterally-driven resonator topologies. This study employs an analytical framework which considers the relative distribution of strain energies between the resonating body and clamping stems. The ratios of the strain energies are computed using ANSYS FEA and used to provide an indicator of the expected anchor-limited quality factors. Three MEMS resonator topologies have been fabricated and characterized in moderate vacuum. The associated measured quality factors are compared against the computed strain energy ratios, and the trends are shown to agree well with the experimental data. © 2011 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador: