91 resultados para gas sensitivity

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper reports on the in-situ growth of zinc oxide nanowires (ZnONWs) on a complementary metal oxide semiconductor (CMOS) substrate, and their performance as a sensing element for ppm (parts per million) levels of toluene vapour in 3000 ppm humid air. Zinc oxide NWs were grown using a low temperature (only 90°C) hydrothermal method. The ZnONWs were first characterised both electrically and through scanning electron microscopy. Then the response of the on-chip ZnONWs to different concentrations of toluene (400-2600ppm) was observed in air at 300°C. Finally, their gas sensitivity was determined and found to lie between 0.1% and 0.3% per ppm. © 2013 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, micro gas sensor was fabricated using indium oxide nanowire for effective gas detection and monitoring system. Indium oxide nanowire was grown using thermal CVD, and their structural properties were examined by the SEM, XRD and TEM. The electric properties for microdropped indium oxide nanowire device were measured, and gas response characteristics were examined for CO gas. Sensors showed high sensitivity and stability for CO gas. And with below 20 mw power consumption, 5 ppm CO could be detected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes coupled-effect simulations of smart micro gas-sensors based on standard BiCMOS technology. The smart sensor features very low power consumption, high sensitivity and potential low fabrication cost achieved through full CMOS integration. For the first time the micro heaters are made of active CMOS elements (i.e. MOSFET transistors) and embedded in a thin SOI membrane consisting of Si and SiO2 thin layers. Micro gas-sensors such as chemoresistive, microcalorimeteric and Pd/polymer gate FET sensors can be made using this technology. Full numerical analyses including 3D electro-thermo-mechanical simulations, in particular stress and deflection studies on the SOI membranes are presented. The transducer circuit design and the post-CMOS fabrication process, which includes single sided back-etching, are also reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a new generation of integrated solid-state gas-sensors embedded in SOI micro-hotplates. The micro-hotplates lie on a SOI membrane and consist of MOSFET heaters that elevate the operating temperature, through self-heating, of a gas sensitive material. These sensors are fully compatible with SOI CMOS or BiCMOS technologies, offer ultra-low power consumption (under 100 mW), high sensitivity, low noise, low unit cost, reproducibility and reliability through the use of on-chip integration. In addition, the new integrated sensors offer a nearly uniform temperature distribution over the active area at its operating temperatures at up to about 300-350°C. This makes SOI-based gas-sensing devices particularly attractive for use in handheld battery-operated gas monitors. This paper reports on the design of a chemo-resistive gas sensor and proposes for the first time an intelligent SOI membrane microcalorimeter using active micro-FET heaters and temperature sensors. A comprehensive set of numerical and analogue simulations is also presented including complex 2D and 3D electro-thermal numerical analyses. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes multiple field-coupled simulations and device characterization of fully CMOS-MEMS-compatible smart gas sensors. The sensor structure is designated for gas/vapour detection at high temperatures (>300 °C) with low power consumption, high sensitivity and competent mechanic robustness employing the silicon-on-insulator (SOI) wafer technology, CMOS process and micromachining techniques. The smart gas sensor features micro-heaters using p-type MOSFETs or polysilicon resistors and differentially transducing circuits for in situ temperature measurement. Physical models and 3D electro-thermo-mechanical simulations of the SOI micro-hotplate induced by Joule, self-heating, mechanic stress and piezoresistive effects are provided. The electro-thermal effect initiates and thus affects electronic and mechanical characteristics of the sensor devices at high temperatures. Experiments on variation and characterization of micro-heater resistance, power consumption, thermal imaging, deformation interferometry and dynamic thermal response of the SOI micro-hotplate have been presented and discussed. The full integration of the smart gas sensor with automatically temperature-reading ICs demonstrates the lowest power consumption of 57 mW at 300 °C and fast thermal response of 10 ms. © 2008 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas turbine compression systems are required to perform adequately over a range of operating conditions. Complexity has encouraged the conventional design process for compressors to focus initially on one operating point, usually the most commonor arduous, to draw up an outline design. Generally, only as this initial design is refined is its offdesign performance assessed in detail. Not only does this necessarily introduce a potentially costly and timeconsuming extra loop in the design process, but it also may result in a design whose offdesign behavior is suboptimal. Aversion of nonintrusive polynomial chaos was previously developed in which a set of orthonormal polynomials was generated to facilitate a rapid analysis of robustness in the presence of generic uncertainties with good accuracy. In this paper, this analysis method is incorporated in real time into the design process for the compression system of a three-shaft gas turbine aeroengine. This approach to robust optimization is shown to lead to designs that exhibit consistently improved system performance with reduced sensitivity to offdesign operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The noble gas sensor using multiple ZnO nanorods was fabricated with CMOS compatible process and sol-gel growth method on selective area and gas response characteristics to NO2 gas of the sensor device were investigated. We confirmed the sensors had high sensitive response denoted by the sensitivity of several tens for NO2 gas sensing and also showed pretty low power consumption close to 20 mW even though the recovery of resistance come up to almost the initial value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PDMS based imprinting is firstly developed for patterning of rGO on a large area. High quality stripe and square shaped rGO patterns are obtained and the electrical properties of the rGO film can be adjusted by the concentration of GO suspension. The arrays of rGO electronics are fabricated from the patterned film by a simple shadow mask method. Gas sensors, which are based on these rGO electronics, show high sensitivity and recyclable usage in sensing NH 3. © 2012 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The universal exhaust gas oxygen (UEGO) sensor is a well-established device which was developed for the measurement of relative air fuel ratio in internal combustion engines. There is, however, little information available which allows for the prediction of the UEGO's behaviour when exposed to arbitrary gas mixtures, pressures and temperatures. Here we present a steady-state model for the sensor, based on a solution of the Stefan-Maxwell equation, and which includes a momentum balance. The response of the sensor is dominated by a diffusion barrier, which controls the rate of diffusion of gas species between the exhaust and a cavity. Determination of the diffusion barrier characteristics, especially the mean pore size, porosity and tortuosity, is essential for the purposes of modelling, and a measurement technique based on identification of the sensor pressure giving zero temperature sensitivity is shown to be a convenient method of achieving this. The model, suitably calibrated, is shown to make good predictions of sensor behaviour for large variations of pressure, temperature and gas composition. © 2012 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel platform for the formation of cost-effective PCB-integrated optical waveguide sensors. The sensor design relies on the use of multimode polymer waveguides that can be formed directly on standard PCBs and commercially-available chemical dyes, enabling the integration of all essential sensor components (electronic, photonic, chemical) on low-cost substrates. Moreover, it enables the detection of multiple analytes from a single device by employing waveguide arrays functionalised with different chemical dyes. The devices can be manufactured with conventional methods of the PCB industry, such as solder-reflow processes and pick-and-place assembly techniques. As a proof of principle, a PCB-integrated ammonia gas sensor is fabricated on a FR4 substrate. The sensor operation relies on the change of the optical transmission characteristics of chemically functionalised optical waveguides in the presence of ammonia molecules. The fabrication and assembly of the sensor unit, as well as fundamental simulation and characterisation studies, are presented. The device achieves a sensitivity of approximately 30 ppm and a linear response up to 600 ppm at room temperature. Finally, the potential to detect multiple analytes from a single device is demonstrated using principal-component analysis. © 1983-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method of measuring cylinder gas temperature in an internal combustion engine cylinder is introduced. The physical basis for the technique is that the flow rate through an orifice is a function of the temperature of the gas flowing through the orifice. Using a pressure transducer in the cylinder, and another in a chamber connected to the cylinder via an orifice, it is shown how the cylinder temperature can be determined with useful sensitivity. In this paper the governing equations are derived, which show that the heat transfer characteristics of the chamber are critical to the performance of the system, and that isothermal or adiabatic conditions give the optimum performance. For a typical internal combustion engine, it is found that the pre-compression cylinder temperature is related to the chamber pressure late in the compression process with sensitivity of the order of 0.005 bar/K. Copyright © 2010 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene is a single layer of covalently bonded carbon atoms, which was discovered only 8 years ago and yet has already attracted intense research and commercial interest. Initial research focused on its remarkable electronic properties, such as the observation of massless Dirac fermions and the half-integer quantum Hall effect. Now graphene is finding application in touch-screen displays, as channels in high-frequency transistors and in graphene-based integrated circuits. The potential for using the unique properties of graphene in terahertz-frequency electronics is particularly exciting; however, initial experiments probing the terahertz-frequency response of graphene are only just emerging. Here we show that the photoconductivity of graphene at terahertz frequencies is dramatically altered by the adsorption of atmospheric gases, such as nitrogen and oxygen. Furthermore, we observe the signature of terahertz stimulated emission from gas-adsorbed graphene. Our findings highlight the importance of environmental conditions on the design and fabrication of high-speed, graphene-based devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design, 3D FEM modelling and measurement results of a novel high temperature, low power SOI CMOS MEMS thermal conductivity gas sensor are presented here. The sensor consists of a circular membrane with an embedded tungsten micro-heater. The high sensing capability is based on the temperature sensitivity of the resistive heating element. The sensor was fabricated at a commercial foundry using a 1 μm process and measures only 1×1 mm 2. The circular membrane has a 600 μm diameter while the heating element has a 320 μm diameter. Measurement results show that for a constant power consumption of 75 mW the heater temperature was 562.4°C in air, 565.9°C in N2, 592.5°C for 1 % H2 in Ar and 599.5°C in Ar. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Design, FEM modelling and characterization of a novel dual mode thermal conductivity and infrared absorption sensor using SOI CMOS technology is reported. The dual mode sensing capability is based on the temperature sensitivity and wideband infrared radiation emission of the resistive heating element. The sensor was fabricated at a commercial foundry using a 1 μm process and measures only 1×1 mm2. Infrared detectors usually use thermopiles in addition to a separate IR source. A single highly responsive dual mode source and sensing element targeting not only low molecular mass gases but also greenhouse gases, while consuming 40 mW power at 700°C in synthetic air, thus makes this sensor particularly viable for battery powered handheld devices. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fully coupled methane hydrate model developed in Cambridge was adopted in this numerical study on gas production trial at the Eastern Nankai Trough, Japan 2013. Based on the latest experimental data of hydrate soil core samples, the clay parameters at Eastern Nankai site were successfully calibrated. With updated clay parameters and site geometry, a 50 days gas production trail was numerically simulated in FLAC2D. The geomechanical behaviour of hydrate bearing sediments under 3 different depressurization strategies were explored and discussed. The results from both axisymmetrical and plane-strain models suggest, the slope of the seabed only affects mechanical properties while no significant impact on the dissociation, temperature and pore pressure. For mechanical deformation after PT recovery, there are large settlements above the perforation zone and small uplift underneath the production zone. To validate the fully coupled model, numerical simulation with finer mesh in the hydrate production zone was carried out. The simulation results suggest good agreement between our model and JOE's results on history matching of gas and water production during trial. Parameter sensitivity of gas production is also investigated and concluded the sea water salinity is a dominant factor for gas production.