8 resultados para game attributes
em Cambridge University Engineering Department Publications Database
Resumo:
Players cooperate in experiments more than game theory would predict. We introduce the ‘returns-based beliefs’ approach: the expected returns of a particular strategy in proportion to total expected returns of all strategies. Using a decision analytic solution concept, Luce’s (1959) probabilistic choice model, and ‘hyperpriors’ for ambiguity in players’ cooperability, our approach explains empirical observations in various classes of games including the Prisoner’s and Traveler’s Dilemmas. Testing the closeness of fit of our model on Selten and Chmura (2008) data for completely mixed 2 × 2 games shows that with loss aversion, returns-based beliefs explain the data better than other equilibrium concepts.
Resumo:
This paper is concerned with the modelling of strategic interactions between the human driver and the vehicle active front steering (AFS) controller in a path-following task where the two controllers hold different target paths. The work is aimed at extending the use of mathematical models in representing driver steering behaviour in complicated driving situations. Two game theoretic approaches, namely linear quadratic game and non-cooperative model predictive control (non-cooperative MPC), are used for developing the driver-AFS interactive steering control model. For each approach, the open-loop Nash steering control solution is derived; the influences of the path-following weights, preview and control horizons, driver time delay and arm neuromuscular system (NMS) dynamics are investigated, and the CPU time consumed is recorded. It is found that the two approaches give identical time histories as well as control gains, while the non-cooperative MPC method uses much less CPU time. Specifically, it is observed that the introduction of weight on the integral of vehicle lateral displacement error helps to eliminate the steady-state path-following error; the increase in preview horizon and NMS natural frequency and the decline in time delay and NMS damping ratio improve the path-following accuracy. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
The delivery of integrated product and service solutions is growing in the aerospace industry, driven by the potential of increasing profits. Such solutions require a life cycle view at the design phase in order to support the delivery of the equipment. The influence of uncertainty associated with design for services is increasingly a challenge due to information and knowledge constraints. There is a lack of frameworks that aim to define and quantify relationship between information and knowledge with uncertainty. Driven by this gap, the paper presents a framework to illustrate the link between uncertainty and knowledge within the design context for services in the aerospace industry. The paper combines industrial interaction and literature review to initially define the design attributes, the associated knowledge requirements and the uncertainties experienced. The framework is then applied in three cases through development of causal loop models (CLMs), which are validated by industrial and academic experts. The concepts and inter-linkages are developed with the intention of developing a software prototype. Future recommendations are also included. © 2014 CIRP.
Resumo:
Relative (comparative) attributes are promising for thematic ranking of visual entities, which also aids in recognition tasks. However, attribute rank learning often requires a substantial amount of relational supervision, which is highly tedious, and apparently impractical for real-world applications. In this paper, we introduce the Semantic Transform, which under minimal supervision, adaptively finds a semantic feature space along with a class ordering that is related in the best possible way. Such a semantic space is found for every attribute category. To relate the classes under weak supervision, the class ordering needs to be refined according to a cost function in an iterative procedure. This problem is ideally NP-hard, and we thus propose a constrained search tree formulation for the same. Driven by the adaptive semantic feature space representation, our model achieves the best results to date for all of the tasks of relative, absolute and zero-shot classification on two popular datasets. © 2013 IEEE.