118 resultados para gain bandwidth
em Cambridge University Engineering Department Publications Database
Resumo:
We present a method to experimentally characterize the gain filter and calculate a corresponding parabolic gain bandwidth of lasers that are described by "class A" dynamics by solving the master equation of spectral condensation for Gaussian spectra. We experimentally determine the gain filter, with an equivalent parabolic gain bandwidth of up to 51 nm, for broad-band InGaAs/GaAs quantum well gain surface-emitting semiconductor laser structures capable of producing pulses down to 60 fs width when mode-locked with an optical Stark saturable absorber mirror. © 2010 Optical Society of America.
Resumo:
A theoretical model for Dicke superradiance (SR) in diode lasers is proposed using the travelling wave method with a spatially resolved absorber and spectrally resolved gain. The role of electrode configuration and optical bandwidth are compared and contrasted as a route to enhance femtosecond pulse power. While pulse duration can be significantly reduced through careful absorber length specification, stability is degraded. However an increased spectral gain bandwidth of up to 150 nm is predicted to allow pulsewidth reductions of down to 10 fs and over 500-W peak power without further degradation in pulse stability. © 2011 IEEE.
Resumo:
In this we have looked at the concept of introducing carbon nanotubes on the surfaces of the microstrip patch antennas. We examined the performance improvements in a patch antenna through finite difference time domain simulations to increase the efficiency of the antenna. The results suggest that carbon nanotubes lead to a higher gain due to their electrical properties. A high gain antenna with low power requirements resulted in achieving a higher overall bandwidth. The designed antenna's gain, bandwidth and directivity are analyzed before and after introducing carbon nanotubes. © 2013 IEEE.
Resumo:
Etched VCSEL sources are reported which avoid bandwidth collapse in multimode fibre using a simple coupling technique to control the launch. These devices have allowed better than over-filled launch bandwidth for alignment tolerances of ±7 microns.
Resumo:
A passively mode-locked optically-pumped InGaAs/GaAs quantum well laser with an intracavity semiconductor saturable absorber mirror emits sub-100-fs pulses. Pulse energy declines steeply as pulse duration is reduced below 100 fs due to gain saturation. © 2010 Optical Society of America.
Resumo:
This paper demonstrates the respective roles that combined gain- and index-coupling play in the dynamic properties and overall link performance of DFB lasers. It is shown that for datacommunication applications, modest gain-coupling enables optimum transmission at 10Gbit/s.
Resumo:
A novel elliptical Gaussian beam line launch is shown to allow improved system capacity for high speed multimode fibre links. This launch maintains higher bandwidth than dual launch even with misalignment of ±6 μm despite not requiring testing at installation. ©2010 IEEE.