34 resultados para fuel ethanol analysis
em Cambridge University Engineering Department Publications Database
Resumo:
Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.
Resumo:
BGCore reactor analysis system was recently developed at Ben-Gurion University for calculating in-core fuel composition and spent fuel emissions following discharge. It couples the Monte Carlo transport code MCNP with an independently developed burnup and decay module SARAF. Most of the existing MCNP based depletion codes (e.g. MOCUP, Monteburns, MCODE) tally directly the one-group fluxes and reaction rates in order to prepare one-group cross sections necessary for the fuel depletion analysis. BGCore, on the other hand, uses a multi-group (MG) approach for generation of one group cross-sections. This coupling approach significantly reduces the code execution time without compromising the accuracy of the results. Substantial reduction in the BGCore code execution time allows consideration of problems with much higher degree of complexity, such as introduction of thermal hydraulic (TH) feedback into the calculation scheme. Recently, a simplified TH feedback module, THERMO, was developed and integrated into the BGCore system. To demonstrate the capabilities of the upgraded BGCore system, a coupled neutronic TH analysis of a full PWR core was performed. The BGCore results were compared with those of the state of the art 3D deterministic nodal diffusion code DYN3D (Grundmann et al.; 2000). Very good agreement in major core operational parameters including k-eff eigenvalue, axial and radial power profiles, and temperature distributions between the BGCore and DYN3D results was observed. This agreement confirms the consistency of the implementation of the TH feedback module. Although the upgraded BGCore system is capable of performing both, depletion and TH analyses, the calculations in this study were performed for the beginning of cycle state with pre-generated fuel compositions. © 2011 Published by Elsevier B.V.
Resumo:
Coupled Monte Carlo depletion systems provide a versatile and an accurate tool for analyzing advanced thermal and fast reactor designs for a variety of fuel compositions and geometries. The main drawback of Monte Carlo-based systems is a long calculation time imposing significant restrictions on the complexity and amount of design-oriented calculations. This paper presents an alternative approach to interfacing the Monte Carlo and depletion modules aimed at addressing this problem. The main idea is to calculate the one-group cross sections for all relevant isotopes required by the depletion module in a separate module external to Monte Carlo calculations. Thus, the Monte Carlo module will produce the criticality and neutron spectrum only, without tallying of the individual isotope reaction rates. The onegroup cross section for all isotopes will be generated in a separate module by collapsing a universal multigroup (MG) cross-section library using the Monte Carlo calculated flux. Here, the term "universal" means that a single MG cross-section set will be applicable for all reactor systems and is independent of reactor characteristics such as a neutron spectrum; fuel composition; and fuel cell, assembly, and core geometries. This approach was originally proposed by Haeck et al. and implemented in the ALEPH code. Implementation of the proposed approach to Monte Carlo burnup interfacing was carried out through the BGCORE system. One-group cross sections generated by the BGCORE system were compared with those tallied directly by the MCNP code. Analysis of this comparison was carried out and led to the conclusion that in order to achieve the accuracy required for a reliable core and fuel cycle analysis, accounting for the background cross section (σ0) in the unresolved resonance energy region is essential. An extension of the one-group cross-section generation model was implemented and tested by tabulating and interpolating by a simplified σ0 model. A significant improvement of the one-group cross-section accuracy was demonstrated.
Resumo:
One of the greatest obstacles facing the nuclear industry is that of sustainability, both in terms of the finite reserves of uranium ore and the production of highly radiotoxic spent fuel which presents proliferation and environmental hazards. Alternative nuclear technologies have been suggested as a means of delivering enhanced sustainability with proposals including fast reactors, the use of thorium fuel and tiered fuel cycles. The debate as to which is the most appropriate technology continues, with each fuel system and reactor type delivering specific advantages and disadvantages which can be difficult to compare fairly. This paper demonstrates a framework of performance metrics which, coupled with a first-order lumped reactor model to determine nuclide population balances, can be used to quantify the aforementioned pros and cons for a range of different fuel and reactor combinations. The framework includes metrics such as fuel efficiency, spent fuel toxicity and proliferation resistance, and relative cycle performance is analysed through parallel coordinate plots, yielding a quantitative comparison of disparate cycles. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
During its lifetime in the core, the cladding of an Accelerator Driven Subcritical Reactor (ADSR) fuel pin is expected to experience variable stresses due to frequent interruptions in the accelerator proton beam. This paper investigates the thermal fatigue damage in the cladding due to repetitive and unplanned beam interruptions under certain operational conditions. Beam trip data was obtained for four operating high power proton accelerators, among which the Spallation Neutron Source (SNS) superconducting accelerator was selected for further analysis. 9Cr-1Mo-Nb-V (T91) steel was selected as the cladding material because of its proven compatibility with proposed ADSR design concepts. The neutronic, thermal and stress analyses were performed using the PTS-ADS, a code that has been specifically developed for studying the dynamic response to beam-induced transients in accelerator driven subcritical systems. The lifetime of the fuel cladding in the core was estimated for three levels of allowed pin power and specific operating conditions. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
A sensitivity study has been conducted to assess the robustness of the conclusions presented in the MIT Fuel Cycle Study. The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycles. The options include limited recycling in LWRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. The analysis allowed optimization of the fast reactor conversion ratio with respect to desired fuel cycle performance characteristics. The following parameters were found to significantly affect the performance of recycling technologies and their penetration over time: Capacity Factors of the fuel cycle facilities, Spent Fuel Cooling Time, Thermal Reprocessing Introduction Date, and incore and Out-of-core TRU Inventory Requirements for recycling technology. An optimization scheme of the nuclear fuel cycle is proposed. Optimization criteria and metrics of interest for different stakeholders in the fuel cycle (economics, waste management, environmental impact, etc.) are utilized for two different optimization techniques (linear and stochastic). Preliminary results covering single and multi-variable and single and multi-objective optimization demonstrate the viability of the optimization scheme.
Resumo:
This work is concerned with the structural behaviour and the integrity of parallel plate-type nuclear fuel assemblies. A plate-type assembly consists of several thin plates mounted in a box-like structure and is subjected to a coolant flow that can result in a considerable drag force. A finite element model of an assembly is presented to study the sensitivity of the natural frequencies to the stiffness of the plates' junctions. It is shown that the shift in the natural frequencies of the torsional modes can be used to check the global integrity of the fuel assembly while the local natural frequencies of the inner plates can be used to estimate the maximum drag force they can resist. Finally a non-destructive method is developed to assess the resistance of the inner plates to bear an applied load. Extensive computational and experimental results are presented to prove the applicability of the method presented. © 2013 Elsevier B.V. All rights reserved.