8 resultados para freshwater supply to sea island
em Cambridge University Engineering Department Publications Database
Resumo:
The supply of water to a centrifuge experiment has always been important. This paper details a new system which has been successfully commissioned for use on the geotechnical centrifuge at University of Cambridge. High water pressures and large flow rates were delivered to an experimental package, for the modelling of water injection-aided pile jacking. The practicalities of such a system are discussed in relation to existing alternatives, in addition to the precautions taken to ensure safe centrifuge operation. A method for calculating water pressures in the system away from instrumented locations is also proposed, using a linear relationship between energy per unit volume and the flow rate squared. Experimental data are presented to support these relationships.
Resumo:
The supply of water is often required during a centrifuge experiment. For the case of pile jetting, significant flow volumes and pressures are required from the water supply. This paper aims to detail the successful provision of water at high pressures and large flow rates to a centrifuge, using a novel water supply system. An impeller pump was used to pressurise the water in advance of the slip rings, with further pressure provided by the fluid accelerating along the centrifuge beam arm. A maximum pressure of 2 MPa and continuous flow rate of 6 litres per minute were achieved. The calculation of water pressure away from the measurement location is presented, offering a repeatable solution for the pressure at any point in the pipe work. © 2010 Taylor & Francis Group, London.
Resumo:
A novel method for on-line topographic analysis of rough surfaces in the SEM has been investigated. It utilises a digital minicomputer configured to act as a programmable scan generator and automatic focusing unit. The computer is coupled to the microscope through digital-to-analogue converters which enable it to generate ramp waveforms allowing the beam to be scanned over a small sub-region of the field under program control. A further digital-to-analogue converter regulates the current supply to the objective lens of the microscope. The video signal is sampled by means of an analogue-to-digital converter and the resultant binary code stored in the computer's memory as an array of numbers describing relative image intensity. Computations based on the intensity gradient of the image allow the objective lens current to be found for the in-focus condition, which may be related to the working distance through a previous calibration experiment. The sensitivity of the method for detecting small height changes is theoretically of the order of 1 μm. In practice the operator specifies features of interest by means of a mobile spot cursor injected into the SEM display screen, or he may scan the specimen at sub-regions corresponding to pre-determined points on a regular grid defined by him. The operation then proceeds under program control. | A novel method for on-line topographic analysis of rough surfaces in the SEM has been investigated. It utilizes a digital minicomputer configured to act as a programmable scan generator and automatic focusing unit. A further digital-to-analog converter regulates the current supply to the objective lens of the microscope. The video signal is sampled by means of an analog-to-digital converter and the resultant binary code stored in the computer's memory as an array of numbers describing relative image intensity. The sensitivity of the method for detecting small height changes is theroretically of the order of 1 mu m.
Resumo:
A systematic study of the parameter space of graphene chemical vapor deposition (CVD) on polycrystalline Cu foils is presented, aiming at a more fundamental process rationale in particular regarding the choice of carbon precursor and mitigation of Cu sublimation. CH 4 as precursor requires H 2 dilution and temperatures ≥1000 °C to keep the Cu surface reduced and yield a high-quality, complete monolayer graphene coverage. The H 2 atmosphere etches as-grown graphene; hence, maintaining a balanced CH 4/H 2 ratio is critical. Such balance is more easily achieved at low-pressure conditions, at which however Cu sublimation reaches deleterious levels. In contrast, C 6H 6 as precursor requires no reactive diluent and consistently gives similar graphene quality at 100-150 °C lower temperatures. The lower process temperature and more robust processing conditions allow the problem of Cu sublimation to be effectively addressed. Graphene formation is not inherently self-limited to a monolayer for any of the precursors. Rather, the higher the supplied carbon chemical potential, the higher the likelihood of film inhomogeneity and primary and secondary multilayer graphene nucleation. For the latter, domain boundaries of the inherently polycrystalline CVD graphene offer pathways for a continued carbon supply to the catalyst. Graphene formation is significantly affected by the Cu crystallography; i.e., the evolution of microstructure and texture of the catalyst template form an integral part of the CVD process. © 2012 American Chemical Society.
Resumo:
To reduce the surgical trauma to the patient, minimally invasive surgery is gaining considerable importance since the eighties. More recently, robot assisted minimally invasive surgery was introduced to enhance the surgeon's performance in these procedures. This resulted in an intensive research on the design, fabrication and control of surgical robots over the last decades. A new development in the field of surgical tool manipulators is presented in this article: a flexible manipulator with distributed degrees of freedom powered by microhydraulic actuators. The tool consists of successive flexible segments, each with two bending degrees of freedom. To actuate these compliant segments, dedicated fluidic actuators are incorporated, together with compact hydraulic valves which control the actuator motion. Especially the development of microvalves for this application was challenging, and are the main focus of this paper. The valves distribute the hydraulic power from one common high pressure supply to a series of artificial muscle actuators. Tests show that the angular stroke of the each segment of this medical instrument is 90°. © 2012 Springer Science+Business Media, LLC.