5 resultados para frequency-doubling efficiency

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-power (more than 500 mW) and high-speed (more than 1 Gbps) tapered lasers at 1060 nm are required in free-space optical communications and (at lower frequencies of around 100 MHz) display applications for frequency doubling to the green. On a 3 mm long tapered laser, we have obtained an open eye diagram at 1 Gbps, together with a high extinction ratio of 11 dB, an optical modulation amplitude of 530 mW, and a high modulation efficiency of 13 W/A. On a 4 mm-long tapered laser, we have obtained an open eye diagram at 700 Mbps, together with a high extinction ratio of 19 dB, a high optical modulation amplitude of 1.6 W, and a very high modulation efficiency of 19 W/A. On a 6 mm-long tapered laser, we have obtained a very high power of 5W CW and a very high static modulation efficiency of 59.8 W/A. © 2011 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper demonstrates the respective roles that combined index- and gain-coupling play in the overall link performance of distributed feedback (DFB) lasers. Their impacts on both static and dynamic properties such as slope efficiency, resonance frequency, damping rate, and chirp are investigated. Simulation results are compared with experimental data with good agreement. Transmission-oriented optimization is then demonstrated based on a targeted specification. The design tradeoffs are revealed, and it is shown that a modest combination of index- and gain-coupling enables optimum transmission at 10 Gbit/s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combination of high frequency, high power, high efficiency capabilities is a feature of vacuum tube technology. For most of applications, large bandwidths are required, and therefore the modulation method should also allow large bandwidth operation. Optically modulated cold cathodes, avoiding the use of resonant cavities, should satisfy this requirement. This is the reason why we have developed carbon nanotube based photocathode.© 2009 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large digital chips use a significant amount of energy to distribute a multi-GHz clock. By discharging the clock network to ground every cycle, the energy stored in this large capacitor is wasted. Instead, the energy can be recovered using an on-chip DC-DC converter. This paper investigates the integration of two DC-DC converter topologies, boost and buck-boost, with a high-speed clock driver. The high operating frequency significantly shrinks the required size of the L and C components so they can be placed on-chip; typical converters place them off-chip. The clock driver and DC-DC converter are able to share the entire tapered buffer chain, including the widest drive transistors in the final stage. To achieve voltage regulation, the clock duty cycle must be modulated; implying only single-edge-triggered flops should be used. However, this minor drawback is eclipsed by the benefits: by recovering energy from the clock, the output power can actually exceed the additional power needed to operate the converter circuitry, resulting in an effective efficiency greater than 100%. Furthermore, the converter output can be used to operate additional power-saving features like low-voltage islands or body bias voltages. ©2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is much to gain from providing walking machines with passive dynamics, e.g. by including compliant elements in the structure. These elements can offer interesting properties such as self-stabilization, energy efficiency and simplified control. However, there is still no general design strategy for such robots and their controllers. In particular, the calibration of control parameters is often complicated because of the highly nonlinear behavior of the interactions between passive components and the environment. In this article, we propose an approach in which the calibration of a key parameter of a walking controller, namely its intrinsic frequency, is done automatically. The approach uses adaptive frequency oscillators to automatically tune the intrinsic frequency of the oscillators to the resonant frequency of a compliant quadruped robot The tuning goes beyond simple synchronization and the learned frequency stays in the controller when the robot is put to halt. The controller is model free, robust and simple. Results are presented illustrating how the controller can robustly tune itself to the robot, as well as readapt when the mass of the robot is changed. We also provide an analysis of the convergence of the frequency adaptation for a linearized plant, and show how that analysis is useful for determining which type of sensory feedback must be used for stable convergence. This approach is expected to explain some aspects of developmental processes in biological and artificial adaptive systems that "develop" through the embodied system-environment interactions. © 2006 IEEE.