4 resultados para forest of trees
em Cambridge University Engineering Department Publications Database
Resumo:
We present a novel mixture of trees (MoT) graphical model for video segmentation. Each component in this mixture represents a tree structured temporal linkage between super-pixels from the first to the last frame of a video sequence. Our time-series model explicitly captures the uncertainty in temporal linkage between adjacent frames which improves segmentation accuracy. We provide a variational inference scheme for this model to estimate super-pixel labels and their confidences in nearly realtime. The efficacy of our approach is demonstrated via quantitative comparisons on the challenging SegTrack joint segmentation and tracking dataset [23].
Resumo:
We present a new route towards customizing the surface properties of microfluidic channels, by a forest of in situ grown multiwalled carbon nanotubes (CNT). Local distortions of the electrical field direction are used to control the direction of the carbon nanotube growth. © 2005 Materials Research Society.
Resumo:
Nanostructuring boron-doped diamond (BDD) films increases their sensitivity and performance when used as electrodes in electrochemical environments. We have developed a method to produce such nanostructured, porous electrodes by depositing BDD thin film onto a densely packed "forest" of vertically aligned multiwalled carbon nanotubes (CNTs). The CNTs had previously been exposed to a suspension of nanodiamond in methanol causing them to clump together into "teepee" or "honeycomb" structures. These nanostructured CNT/BDD composite electrodes have been extensively characterized by scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Not only do these electrodes possess the excellent, well-known characteristics associated with BDD (large potential window, chemical inertness, low background levels), but also they have electroactive areas and double-layer capacitance values ∼450 times greater than those for the equivalent flat BDD electrodes.