12 resultados para flow regime

em Cambridge University Engineering Department Publications Database


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the steady state natural ventilation of an enclosed space in which vent A, located at height hA above the floor, is connected to a vertical stack with a termination at height H, while the second vent, B, at height hB above the floor, connects directly to the exterior. We first examine the flow regimes which develop with a distributed source of heating at the base of the space. If hBhB>hA, then two different flow regimes may develop. Either (i) there is inflow through vent B and outflow through vent A, or (ii) the flow reverses, with inflow down the stack into vent A and outflow through vent B. With inflow through vent A, the internal temperature and ventilation rate depend on the relative height of the two vents, A and B, while with inflow through vent B, they depend on the height of vent B relative to the height of the termination of the stack H. With a point source of heating, a similar transition occurs, with a unique flow regime when vent B is lower than vent A, and two possible regimes with vent B higher than vent A. In general, with a point source of buoyancy, each steady state is characterised by a two-layer density stratification. Depending on the relative heights of the two vents, in the case of outflow through vent A connected to the stack, the interface between these layers may lie above, at the same level as or below vent A, leading to discharge of either pure upper layer, a mixture of upper and lower layer, or pure lower layer fluid. In the case of inflow through vent A connected to the stack, the interface always lies below the outflow vent B. Also, in this case, if the inflow vent A lies above the interface, then the lower layer becomes of intermediate density between the upper layer and the external fluid, whereas if the interface lies above the inflow vent A, then the lower layer is composed purely of external fluid. We develop expressions to predict the transitions between these flow regimes, in terms of the heights and areas of the two vents and the stack, and we successfully test these with new laboratory experiments. We conclude with a discussion of the implications of our results for real buildings.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The dynamics of a fluid in a vertical tube, subjected to an oscillatory pressure gradient, is studied experimentally for both a Newtonian and a viscoelastic shear-thinning fluid. Particle image velocimetry is used to determine the two-dimensional velocity fields in the vertical plane of the tube axis, in a range of driving amplitudes from 0.8 to 2.5 mm and of driving frequencies from 2.0 to 11.5 Hz. The Newtonian fluid exhibits a laminar flow regime, independent of the axial position, in the whole range of drivings. For the complex fluid, instead, the parallel shear flow regime exhibited at low amplitudes [Torralba, Phys. Rev. E 72, 016308 (2005)] becomes unstable at higher drivings against the formation of symmetric vortices, equally spaced along the tube. At even higher drivings the vortex structure itself becomes unstable, and complex nonsymmetric structures develop. Given that inertial effects remain negligible even at the hardest drivings (Re < 10(-1)), it is the complex rheology of the fluid that is responsible for the instabilities observed. The system studied represents an interesting example of the development of shear-induced instabilities in nonlinear complex fluids in purely parallel shear flow.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper is the third part of a report on systematic measurements and analyses of wind-generated water waves in a laboratory environment. The results of the measurements of the turbulent flow on the water side are presented here, the details of which include the turbulence structure, the correlation functions, and the length and velocity scales. It shows that the mean turbulent velocity profiles are logarithmic, and the flows are hydraulically rough. The friction velocity in the water boundary layer is an order of magnitude smaller than that in the wind boundary layer. The level of turbulence is enhanced immediately beneath the water surface due to micro-breaking, which reflects that the Reynolds shear stress is of the order u *w 2. The vertical velocities of the turbulence are related to the relevant velocity scale at the still-water level. The autocorrelation function in the vertical direction shows features of typical anisotropic turbulence comprising a large range of wavelengths. The ratio between the microscale and macroscale can be expressed as λ/Λ=a Re Λ n, with the exponent n slightly different from -1/2, which is the value when turbulence production and dissipation are in balance. On the basis of the wavelength and turbulent velocity, the free-surface flows in the present experiments fall into the wavy free-surface flow regime. The integral turbulent scale on the water side alone underestimates the degree of disturbance at the free surface. © 2012 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The classification of a concrete mixture as self-compacting (SCC) is performed by a series of empirical characterization tests that have been designed to assess not only the flowability of the mixture but also its segregation resistance and filling ability. The objective of the present work is to correlate the rheological parameters of SCC matrix, yield stress and plastic viscosity, to slump flow measurements. The focus of the slump flow test investigation was centered on the fully yielded flow regime and an empirical model relating the yield stress to material and flow parameters is proposed. Our experimental data revealed that the time for a spread of 500 mm which is used in engineering practice as reference for measurement parameters, is an arbitrary choice. Our findings indicate that the non-dimensional final spread is linearly related to the non-dimensional yield-stress. Finally, there are strong indications that the non-dimensional viscosity of the mixture is associated with the non-dimensional final spread as well as the stopping time of the slump flow; this experimental data set suggests an exponential decay of the final spread and stopping time with viscosity. © Appl. Rheol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the transient ventilation flow within a confined ventilated space, with high- and low-level openings, when the strength of a low-level point source of heat is changed instantaneously. The steady-flow regime in the space involves a turbulent buoyant plume, which rises from the point source to a well-mixed warm upper layer. The steady-state height of the interface between this layer and the lower layer of exterior fluid is independent of the heat flux, but the upper layer becomes progressively warmer with heat flux. New analogue laboratory experiments of the transient adjustment between steady states identify that if the heat flux is increased, the continuing plume propagates to the top of the room forming a new, warmer layer. This layer gradually deepens, and as the turbulent plume entrains fluid from the original warm layer, the original layer is gradually depleted and disappears, and a new steady state is established. In contrast, if the source buoyancy flux is decreased, the continuing plume is cooler than the original plume, so that on reaching the interface it is of intermediate density between the original warm layer and the external fluid. The plume supplies a new intermediate layer, which gradually deepens with the continuing flow. In turn, the original upper layer becomes depleted, both as a result of being vented through the upper opening of the space, but also due to some penetrative entrainment of this layer by the plume, as the plume overshoots the interface before falling back to supply the new intermediate layer. We develop quantitative models which are in good accord with our experimental data, by combining classical plume theory with models of the penetrative entrainment for the case of a decrease in heating. Typically, we find that the effect of penetrative entrainment on the density of the intruding layer is relatively weak, provided the change in source strength is sufficiently large. However, penetrative entrainment measurably increases the rate at which the depth of the draining layer decreases. We conclude with a discussion of the importance of these results for the control of naturally ventilated spaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this Letter, the rarefaction and roughness effects on the heat transfer process in gas microbearings are investigated. A heat transfer model is developed by introducing two-variable Weierstrass-Mandelbrot (W-M) function with fractal geometry. The heat transfer problem in the multiscale self-affine rough microbearings at slip flow regime is analyzed and discussed. The results show that rarefaction has more significant effect on heat transfer in rough microbearings with lower fractal dimension. The negative influence of roughness on heat transfer found to be the Nusselt number reduction. The heat transfer performance can be optimized with increasing fractal dimension of the rough surface. © 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Avalanches, debris flows, and landslides are geophysical hazards, which involve rapid mass movement of granular solids, water and air as a single-phase system. The dynamics of a granular flow involve at least three distinct scales: the micro-scale, meso-scale, and the macro-scale. This study aims to understand the ability of continuum models to capture the micro-mechanics of dry granular collapse. Material Point Method (MPM), a hybrid Lagrangian and Eulerian approach, with Mohr-Coulomb failure criterion is used to describe the continuum behaviour of granular column collapse, while the micromechanics is captured using Discrete Element Method (DEM) with tangential contact force model. The run-out profile predicted by the continuum simulations matches with DEM simulations for columns with small aspect ratios ('h/r' < 2), however MPM predicts larger run-out distances for columns with higher aspect ratios ('h/r' > 2). Energy evolution studies in DEM simulations reveal higher collisional dissipation in the initial free-fall regime for tall columns. The lack of a collisional energy dissipation mechanism in MPM simulations results in larger run-out distances. Micro-structural effects, such as shear band formations, were observed both in DEM and MPM simulations. A sliding flow regime is observed above the distinct passive zone at the core of the column. Velocity profiles obtained from both the scales are compared to understand the reason for a slow flow run-out mobilization in MPM simulations. © 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present solutions to scattering problems for unsteady disturbances to a mean swirling flow in an annular duct with a rigid 'splitter'. This situation has application to rotor-stator interaction noise in aeroengines, where the flow downstream of the fan is swirling and bifurcates into the by-pass duct and the engine core. We also consider the trailing edge extension of this problem. Inviscid mean flow in a cylindrical annulus is considered, with both axial and swirling (azimuthal) velocity components. The presence of vorticity in the mean flow couples the acoustic and vorticity modes of irrotational flow. Instead we have one combined spectrum of acoustic-vorticity waves in which the 'sonic' and 'nearly-convected' modes are fully coupled. In addition to the aeroacoustics application the results offer insight into the behaviour of these acoustic-vorticity waves, and the precise nature of the coupling between the two types of mode. Two regimes are discussed in which progress has been made, one for a specialised mean flow, uniform axial flow and rigid body swirl, and a second regime in which the frequency is assumed large, valid for any axisymmetric mean flow. The Wiener-Hopf technique is used to solve the scattering problems mathematically, and we present numerical evaluations of these solutions. Several new effects are seen to arise due to the mean vorticity, in particular the generation of sound at a trailing edge due to the scattering of a nearly convected disturbance, in contrast to the way a convected gust silently passes a trailing edge in uniform mean flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known theoretically [1-3] that infinitely long fluid loaded plates in mean flow exhibit a range of unusual phenomena in the 'long time' limit. These include convective instability, absolute instability and negative energy waves which are destabilized by dissipation. However, structures are necessarily of finite length and may have discontinuities. Moreover, linear instability waves can only grow over a limited number of cycles before non-linear effects become dominant. We have undertaken an analytical and computational study to investigate the response of finite, discontinuous plates to ascertain if these unusual effects might be realized in practice. Analytically, we take a "wave scattering" [2,4] - as opposed to a "modal superposition" [5] - view of the fluttering plate problem. First, we solve for the scattering coefficients of localized plate discontinuities and identify a range of parameter space, well outside the convective instability regime, where over-scattering or amplified reflection/transmission occurs. These are scattering processes that draw energy from the mean flow into the plate. Next, we use the Wiener-Hopf technique to solve for the scattering coefficients from the leading and trailing edges of a baffled plate. Finally, we construct the response of a finite, baffled plate by a superposition of infinite plate propagating waves continuously scattering off the plate ends and solve for the unstable resonance frequencies and temporal growth rates for long plates. We present a comparison between our computational results and the infinite plate theory. In particular, the resonance response of a moderately sized plate is shown to be in excellent agreement with our long plate analytical predictions. Copyright © 2010 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The linear, drag-reducing effect of vanishingly small riblets breaks down once their size is in the transitionally-rough regime. We have previously reported that this breakdown is caused by the additional Reynolds stresses produced by the appearance of elongated spanwise rollers just above the riblet surface. These rollers are related with the Kelvin--Helmholtz instability of free shear layers, and to similar structures appearing over other rough and porous surfaces. However, because of the limited Reτ=180 in our previous DNSes, it could not be determined whether those structures scaled in inner or outer units. Furthermore, it is questionable if results in the transitionally-rough regime at Reτ=180 can be extrapolated to configurations of practical interest. At such small Reynolds numbers, roughness of transitional size can perturb a large portion of the boundary layer, which is not the case in most industrial and atmospheric applications. To clarify these issues we have conducted a set of DNSes at Reτ=550. Our results indicate that the spanwise rollers scale in wall units, and support the validity of the extrapolation to configurations of practical interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the mechanisms involved in the breakdown of the viscous regime in riblets, with a view to determining the point of optimum performance, where drag reduction ceases to be proportional to the riblet size. This occurs empirically for a groove cross-section $A_g^+ \approx 120^+$. To study the interaction of the riblets with the overlaying turbulent flow, we systematically conduct DNSes in a ribbed turbulent channel with increasing riblet size. The conditionally averaged crossflow above and within the grooves reveals a mean recirculation bubble that exists up to the point of viscous breakdown, isolating the groove floor from the overlying crossflow, and preventing the high momentum fluid from entering the grooves. We do not find evidence of outside vortices lodging within the grooves until $A_g^+ \approx 400$, which is well past the drag minimum, and already into the drag increasing regime. Interestingly, as the bubble breaks down, we observe that quasi-two-dimensional spanwise structures form just above the riblets, similar to those observed above porous surfaces and plant canopies, which appear to be involved in the performance degradation.