169 resultados para fixed speed induction generator
em Cambridge University Engineering Department Publications Database
Resumo:
This study presents the performance analysis and testing of a 250 kW medium-speed brushless doubly-fed induction generator (DFIG), and its associated power electronics and control systems. The experimental tests confirm the design, and showthe system's steady-state and dynamic performance and grid low-voltage ride- through capability. The medium-speed brushless DFIG in combination with a simplified two-stage gearbox promises a low-cost low-maintenance and reliable drivetrain for wind turbine applications. © The Institution of Engineering and Technology 2013.
Resumo:
In view of its special features, the brushless doubly fed induction generator (BDFIG) shows high potentials to be employed as a variable-speed drive or wind generator. However, the machine suffers from low efficiency and power factor and also high level of noise and vibration due to spatial harmonics. These harmonics arise mainly from rotor winding configuration, slotting effects, and saturation. In this paper, analytical equations are derived for spatial harmonics and their effects on leakage flux, additional loss, noise, and vibration. Using the derived equations and an electromagnetic-thermal model, a simple design procedure is presented, while the design variables are selected based on sensitivity analyses. A multiobjective optimization method using an imperialist competitive algorithm as the solver is established to maximize efficiency, power factor, and power-to-weight ratio, as well as to reduce rotor spatial harmonic distortion and voltage regulation simultaneously. Several constraints on dimensions, magnetic flux densities, temperatures, vibration level, and converter voltage and rating are imposed to ensure feasibility of the designed machine. The results show a significant improvement in the objective function. Finally, the analytical results of the optimized structure are validated using finite-element method and are compared to the experimental results of the D180 frame size prototype BDFIG. © 1982-2012 IEEE.
Resumo:
The Brushless Doubly-Fed Induction Generator (BDFIG) shows commercial promise as replacement for doublyfed slip-ring generators for wind power applications by offering reduced capital and operational costs due to its brushless operation. In order to facilitate its commercial deployment, the capabilities of the BDFIG system to comply with grid code requirements have to be assessed. This paper, for the first time, studies the performance of the BDFIG under grid fault ride-through and presents the dynamic behaviour of the machine during three-phase symmetrical voltage dips. Both full and partial voltage dips are studied using a vector model. Simulation and experimental results are provided for a 180 frame BDFIG.
Resumo:
The Brushless Doubly-Fed Induction Generator (BDFIG) shows commercial promise for wind power generation due to its lower cost and higher reliability compared to the Doubly-Fed Induction Generator (DFIG). For the purposes of commercialisation, the BDFIG must meet grid codes at all times. Nowadays, all new wind generators have to ride through certain grid faults, and the Low-Voltage Ride Through (LVRT) capability has become one of the most important points on which to assess the performance a generator. This paper, for the first time, proposes a control scheme to enable the the BDFIG to ride through symmetrical voltage dips. Simulation results and experimental results on a prototype BDFIG show that the proposed scheme gives the capability to ride through low voltage faults. © 2011 IEEE.
Resumo:
The brushless doubly fed induction generator (BDFIG) shows commercial promise for wind power generation due to its lower cost and higher reliability when compared with the conventional DFIG. In the most recent grid codes, wind generators are required to be able to ride through a low-voltage fault and meet the reactive current demand from the grid. A low-voltage ride-through (LVRT) capability is therefore important for wind generators which are integrated into the grid. In this paper, the authors propose a control strategy enabling the BDFIG to successfully ride through a symmetrical voltage dip. The control strategy has been implemented on a 250-kW BDFIG, and the experimental results indicate that the LVRT is possible without a crowbar. © 1982-2012 IEEE.
Resumo:
Brushless doubly fed induction generator (BDFIG) has substantial benefits, which make it an attractive alternative as a wind turbine generator. However, it suffers from lower efficiency and larger dimensions in comparison to DFIG. Hence, optimizing the BDFIG structure is necessary for enhancing its situation commercially. In previous studies, a simple model has been used in BDFIG design procedure that is insufficiently accurate. Furthermore, magnetic saturation and iron loss are not considered because of difficulties in determination of flux density distributions. The aim of this paper is to establish an accurate yet computationally fast model suitable for BDFIG design studies. The proposed approach combines three equivalent circuits including electric, magnetic and thermal models. Utilizing electric equivalent circuit makes it possible to apply static form of magnetic equivalent circuit, because the elapsed time to reach steady-state results in the dynamic form is too long for using in population-based design studies. The operating characteristics, which are necessary for evaluating the objective function and constraints values of the optimization problem, can be calculated using the presented approach considering iron loss, saturation, and geometrical details. The simulation results of a D-180 prototype BDFIG are compared with measured data in order to validate the developed model. © 1986-2012 IEEE.
Resumo:
This paper presents the design and testing of a 250 kW medium-speed Brushless Doubly-Fed Induction Generator (Brushless DFIG), and its associated power electronics and control systems. The experimental tests confirm the design, and show the system's steady-state and dynamic performance. The medium-speed Brushless DFIG in combination with a simplified two-stage gearbox promises a low-cost low-maintenance and reliable drive train for wind turbine applications.
Resumo:
The Brushless Doubly-Fed Machine (BDFM) is attractive for use in wind turbines, especially offshore, as it offers high reliability by virtue of the absence of brushgear. Critical issues in the use of the BDFM in this role at a system level include the appropriate mode of operation, the sizing of associated converter and the control of the machine. At a machine level, the design of the machine and the determination of its ratings are important. Both system and machine issues are reviewed in the light of recent advances in the study of the BDFM, and preliminary comparisons are made with the well-established doubly fed wound rotor induction generator. © 2006 IEEE.
Resumo:
Compared with the Doubly fed induction generators (DFIG), the brushless doubly fed induction generator (BDFIG) has a commercial potential for wind power generation due to its lower cost and higher reliability. In the most recent grid codes, wind generators are required to be capable of riding through low voltage faults. As a result of the negative sequence, induction generators response differently in asymmetrical voltage dips compared with the symmetrical dip. This paper gave a full behavior analysis of the BDFIG under different types of the asymmetrical fault and proposed a novel control strategy for the BDFIG to ride through asymmetrical low voltage dips without any extra hardware such as crowbars. The proposed control strategies are experimentally verified by a 250-kW BDFIG. © 2012 IEEE.
Resumo:
This paper studies the converter rating requirement of a Brushless Doubly-Fed Induction Generator for wind turbine applications by considering practical constraints such as generator torque-speed requirement, reactive power management and grid low-voltage ride-through (LVRT). Practical data have been used to obtain a realistic system model of a Brushless DFIG wind turbine using steady-state and dynamic models. A converter rating optimization is performed based on the given constraints. The converter current and voltage requirements are examined and the resulting inverter rating is compared to optimization algorithm results. In addition, the effects of rotor leakage inductance on LVRT performance and hence converter rating is investigated.
Resumo:
The brushless doubly fed induction generator (BDFIG) has been proposed as a viable alternative in wind turbines to the commonly used doubly fed induction generator (DFIG). The BDFIG retains the benefits of the DFIG, i.e. variable speed operation with a partially rated converter, but without the use of brush gear and slip rings, thereby conferring enhanced reliability. As low voltage ride-through (LVRT) performance of the DFIG-based wind turbine is well understood, this paper aims to analyze LVRT behavior of the BDFIG-based wind turbine in a similar way. In order to achieve this goal, the equivalence between their two-axis model parameters is investigated. The variation of flux linkages, back-EMFs and currents of both types of generator are elaborated during three phase voltage dips. Moreover, the structural differences between the two generators, which lead to different equivalent parameters and hence different LVRT capabilities, are investigated. The analytical results are verified via time-domain simulations for medium size wind turbine generators as well as experimental results of a voltage dip on a prototype 250 kVA BDFIG. © 2014 Elsevier B.V.