161 resultados para field effect transistor
em Cambridge University Engineering Department Publications Database
Resumo:
We demonstrate the fabrication and operation of a carbon nanotube (CNT) based Schottky diode by using a Pd contact (high-work-function metal) and an Al contact (low-work-function metal) at the two ends of a single-wall CNT. We show that it is possible to tune the rectification current-voltage (I-V) characteristics of the CNT through the use of a back gate. In contrast to standard back gate field-effect transistors (FET) using same-metal source drain contacts, the asymmetrically contacted CNT operates as a directionally dependent CNT FET when gated. While measuring at source-drain reverse bias, the device displays semiconducting characteristics whereas at forward bias, the device is nonsemiconducting. © 2005 American Institute of Physics.
Resumo:
A new idea of power device, which contains highly nitrogen-doped CVD diamond and Schottky contact, is proposed to actualise a power device with diamond. Two-dimensional simulation is conducted using ISE TCAD device simulator. While comparably high current is obtained in a transient simulation as expected, this current does not contribute to the drain-source current because of the symmetry of the device. Using an asymmetric structure or bias conditions, the device has high potential as an electric device for extremely high power, high frequency and high temperature. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We have studied the response of a sol-gel based TiO(2), high k dielectric field effect transistor structure to microwave radiation. Under fixed bias conditions the transistor shows frequency dependent current fluctuations when exposed to continuous wave microwave radiation. Some of these fluctuations take the form of high Q resonances. The time dependent characteristics of these responses were studied by modulating the microwaves with a pulse signal. The measurements show that there is a shift in the centre frequency of these high Q resonances when the pulse time is varied. The measured lifetime of these resonances is high enough to be useful for non-classical information processing.