24 resultados para feed-forward control
em Cambridge University Engineering Department Publications Database
Resumo:
Common-rail fuel injection systems on modern light duty diesel engines are effectively able to respond instantaneously to changes in the demanded injection quantity. In contrast, the air-system is subject to significantly slower dynamics, primarily due to filling/emptying effects in the manifolds and turbocharger inertia. The behaviour of the air-path in a diesel engine is therefore the main limiting factor in terms of engine-out emissions during transient operation. This paper presents a simple mean-value model for the air-path during throttled operation, which is used to design a feed-forward controller that delivers very rapid changes in the in-cylinder charge properties. The feed-forward control action is validated using a state-of-the-art sampling system that allows true cycle-by-cycle measurement of the in-cylinder CO2 concentration. © 2011 SAE International.
Resumo:
Circadian oscillators provide rhythmic temporal cues for a range of biological processes in plants and animals, enabling anticipation of the day/night cycle and enhancing fitness-associated traits. We have used engineering models to understand the control principles of a plant's response to seasonal variation. We show that the seasonal changes in the timing of circadian outputs require light regulation via feed-forward loops, combining rapid light-signaling pathways with entrained circadian oscillators. Linear time-invariant models of circadian rhythms were computed for 3,503 circadian-regulated genes and for the concentration of cytosolic-free calcium to quantify the magnitude and timing of regulation by circadian oscillators and light-signaling pathways. Bioinformatic and experimental analysis show that rapid light-induced regulation of circadian outputs is associated with seasonal rephasing of the output rhythm. We identify that external coincidence is required for rephasing of multiple output rhythms, and is therefore important in general phase control in addition to specific photoperiod-dependent processes such as flowering and hypocotyl elongation. Our findings uncover a fundamental design principle of circadian regulation, and identify the importance of rapid light-signaling pathways in temporal control.
Resumo:
Tubular permanent magnet linear generators are a promising generator technology for use in marine renewables. One aspect of their design relates to the conditions necessary for achieving a smooth thrust response from the generator, free from cogging and periodic variations due to spatial harmonics of the flux cutting the generator coils. This paper presents an experimental and finite element study of the sources of thrust ripple in a prototype linear generator for marine generation. A simple self-commutated control scheme is shown, which uses linear Hall-effect sensors and look-up-table based feed-forward compensation to derive the excitation currents required to drive the machine with constant force. Details of the controller's FPGA based implementation are given, including its strategy for detecting sensor failure. © 2011 IEEE.
Resumo:
In this paper, a novel cortex-inspired feed-forward hierarchical object recognition system based on complex wavelets is proposed and tested. Complex wavelets contain three key properties for object representation: shift invariance, which enables the extraction of stable local features; good directional selectivity, which simplifies the determination of image orientations; and limited redundancy, which allows for efficient signal analysis using the multi-resolution decomposition offered by complex wavelets. In this paper, we propose a complete cortex-inspired object recognition system based on complex wavelets. We find that the implementation of the HMAX model for object recognition in [1, 2] is rather over-complete and includes too much redundant information and processing. We have optimized the structure of the model to make it more efficient. Specifically, we have used the Caltech 5 standard dataset to compare with Serre's model in [2] (which employs Gabor filter bands). Results demonstrate that the complex wavelet model achieves a speed improvement of about 4 times over the Serre model and gives comparable recognition performance. © 2011 IEEE.