3 resultados para exposure time

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Particle tracking techniques are often used to assess the local mechanical properties of cells and biological fluids. The extracted trajectories are exploited to compute the mean-squared displacement that characterizes the dynamics of the probe particles. Limited spatial resolution and statistical uncertainty are the limiting factors that alter the accuracy of the mean-squared displacement estimation. We precisely quantified the effect of localization errors in the determination of the mean-squared displacement by separating the sources of these errors into two separate contributions. A "static error" arises in the position measurements of immobilized particles. A "dynamic error" comes from the particle motion during the finite exposure time that is required for visualization. We calculated the propagation of these errors on the mean-squared displacement. We examined the impact of our error analysis on theoretical model fluids used in biorheology. These theoretical predictions were verified for purely viscous fluids using simulations and a multiple-particle tracking technique performed with video microscopy. We showed that the static contribution can be confidently corrected in dynamics studies by using static experiments performed at a similar noise-to-signal ratio. This groundwork allowed us to achieve higher resolution in the mean-squared displacement, and thus to increase the accuracy of microrheology studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, the effect of dry oxidation on the electrochemical properties of carbon nanotube arrays is investigated. Oxygenated surface functional groups were introduced to the arrays by oxygen plasma treatment, where their surface concentrations were varied by controlling the exposure time. The finding presented herein shows an augmentation of nearly thirty times in term of specific capacitance when the arrays are oxidized. Similar behavior is also observed in the non-aqueous electrolytes where the specific capacitance of the oxidized carbon nanotube arrays is measured more than three times higher than that of the pristine ones. However, overexposure to oxygen plasma treatment reverses this effect. At such high oxidation level, the damage to the graphitic structure becomes more pronounced such that the capacitive behavior of the arrays is overshadowed by their resistive behavior. These findings are important for further development of carbon nanotube based electrochemical capacitors. © 2012 Materials Research Society.