2 resultados para experiencing illness and narratives

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Two phenomena have become increasingly visible over the past decade: the significant global burden of disease arising from mental illness and the rapid acceleration of mobile phone usage in poorer countries. Mental ill-health accounts for a significant proportion of global disability-adjusted life years (DALYs) and years lived with disability (YLDs), especially in poorer countries where a number of factors combine to exacerbate issues of undertreatment. Yet poorer countries have also witnessed significant investments in, and dramatic expansions of, mobile coverage and usage over the past decade. DEBATE: The conjunction of high levels of mental illness and high levels of mobile phone usage in poorer countries highlights the potential for "mH(2)" interventions--i.e. mHealth (mobile technology-based) mental health interventions--to tackle global mental health challenges. However, global mental health movements and initiatives have yet to engage fully with this potential, partly because of scepticism towards technological solutions in general and partly because existing mH(2) projects in mental health have often taken place in a fragmented, narrowly-focused, and small-scale manner. We argue for a deeper and more sustained engagement with mobile phone technology in the global mental health context, and outline the possible shape of an integrated mH(2) platform for the diagnosis, treatment, and monitoring of mental health. SUMMARY: Existing and developing mH(2) technologies represent an underutilised resource in global mental health. If development, evaluation, and implementation challenges are overcome, an integrated mH2 platform would make significant contributions to mental healthcare in multiple settings and contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lab-on-a-chip (LOC) is one of the most important microsystem applications with promise for use in microanalysis, drug development, diagnosis of illness and diseases etc. LOC typically consists of two main components: microfluidics and sensors. Integration of microfluidics and sensors on a single chip can greatly enhance the efficiency of biochemical reactions and the sensitivity of detection, increase the reaction/detection speed, and reduce the potential cross-contamination, fabrication time and cost etc. However, the mechanisms generally used for microfluidics and sensors are different, making the integration of the two main components complicated and increases the cost of the systems. A lab-on-a-chip system based on a single surface acoustic wave (SAW) actuation mechanism is proposed. SAW devices were fabricated on nanocrystalline ZnO thin films deposited on Si substrates using sputtering. Coupling of acoustic waves into a liquid induces acoustic streaming and motion of droplets. A streaming velocity up to ∼ 5cm/s and droplet pumping speeds of ∼lcm/s were obtained. It was also found that a higher order mode wave, the Sezawa wave is more effective in streaming and transportation of microdroplets. The ZnO SAW sensor has been used for prostate antigen/antibody biorecognition systems, demonstrated the feasibility of using a single actuation mechanism for lab-on-a-chip applications. © 2010 Materials Research Society.