6 resultados para evaluation designs

em Cambridge University Engineering Department Publications Database


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Computational Design has traditionally required a great deal of geometrical and parametric data. This data can only be supplied at stages later than conceptual design, typically the detail stage, and design quality is given by some absolute fitness function. On the other hand, design evaluation offers a relative measure of design quality that requires only a sparse representation. Quality, in this case, is a measure of how well a design will complete its task.

The research intends to address the question: "Is it possible to evaluate a mechanical design at the conceptual design phase and be able to make some prediction of its quality?" Quality can be interpreted as success in the marketplace, success in performing the required task, or some other user requirement. This work aims to determine a minimum level of representation such that conceptual designs can be usefully evaluated without needing to capture detailed geometry. This representation will form the model for the conceptual designs that are being considered for evaluation. The method to be developed will be a case-based evaluation system, that uses a database of previous designs to support design exploration. The method will not be able to support novel design as case-based design implies the model topology must be fixed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper experimentally demonstrates that, for two representative indoor distributed antenna system (DAS) scenarios, existing radio-over-fiber (RoF) DAS installations can enhance the capacity advantages of broadband 3 × 3 multiple-input-multiple-output (MIMO) radio services without requiring additional fibers or multiplexing schemes. This is true for both single-and multiple-user cases with a single base station and multiple base stations. First, a theoretical example is used to illustrate that there is a negligible improvement in signal-to-noise ratio (SNR) when using a MIMO DAS with all N spatial streams replicated at N RAUs, compared with a MIMO DAS with only one of the N streams replicated at each RAU for N ≤ 4. It is then experimentally confirmed that a 3 × 3 MIMO DAS offers improved capacity and throughput compared with a 3 × 3 MIMO collocated antenna system (CAS) for the single-user case in two typical indoor DAS scenarios, i.e., one with significant line-of-sight (LOS) propagation and the other with entirely non-line-of-sight (NLOS) propagation. The improvement in capacity is 3.2% and 4.1%, respectively. Then, experimental channel measurements confirm that there is a negligible capacity increase in the 3 × 3 configuration with three spatial streams per antenna unit over the 3 × 3 configuration with a single spatial stream per antenna unit. The former layout is observed to provide an increase of ∼1% in the median channel capacity in both the single-and multiple-user scenarios. With 20 users and three base stations, a MIMO DAS using the latter layout offers median aggregate capacities of 259 and 233 bit/s/Hz for the LOS and NLOS scenarios, respectively. It is concluded that DAS installations can further enhance the capacity offered to multiple users by multiple 3 × 3 MIMO-enabled base stations. Further, designing future DAS systems to support broadband 3 × 3 MIMO systems may not require significant upgrades to existing installations for small numbers of spatial streams. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engineering companies face many challenges today such as increased competition, higher expectations from consumers and decreasing product lifecycle times. This means that product development times must be reduced to meet these challenges. Concurrent engineering, reuse of engineering knowledge and the use of advanced methods and tools are among the ways of reducing product development times. Concurrent engineering is crucial in making sure that the products are designed with all issues considered simultaneously. The reuse of engineering knowledge allows existing solutions to be reused. It can also help to avoid the mistakes made in previous designs. Computer-based tools are used to store information, automate tasks, distribute work, perform simulation and so forth. This research concerns the evaluation of tools that can be used to support the design process. These tools are evaluated in terms of the capture of information generated during the design process. This information is vital to allow the reuse of knowledge. Present CAD systems store only information on the final definition of the product such as geometry, materials and manufacturing processes. Product Data Management (PDM) systems can manage all this CAD information along with other product related information. The research includes the evaluation of two PDM systems, Windchill and Metaphase, using the design of a single-handed water tap as a case study. The two PDMs were then compared to PROSUS/DDM. PROSUS is the Process-Based Support System proposed by [Blessing 94] using the same case study. The Design Data Model is the product data model that includes PROSUS. The results look promising. PROSUS/DDM is able to capture most design information and structure and present it logically. The design process and product information is related and stored within the DDM structure. The PDMs can capture most design information, but information from early stages of design is stored only as unstructured documentation. Some problems were found with PROSUS/DDM. A proposal is made that may make it possible to resolve these problems, but this will require further research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reprocessing of Light Water Reactor (LWR) spent fuel to recover plutonium or transuranics for use in Sodium cooled Fast Reactors (SFRs) is a distant prospect in the U.S.A. This has motivated our evaluation of potentially cost-effective operation of uranium startup fast reactors (USFRs) in a once-through mode. This review goes beyond findings reported earlier based on a UC fueled MgO reflected SFR to describe a broader parametric study of options. Cores were evaluated for a variety of fuel/coolant/reflector combinations: UC/UZr/UO 2/UN;Na/Pb; MgO/SS/Zr. The challenge is achieving high burnup while minimizing enrichment and respecting both cladding fluence/dpa and reactivity lifetime limits. These parametric studies show that while UC fuel is still the leading contender, UO 2 fuel and ZrH 1.7 moderated metallic fuel are also attractive if UC proves to be otherwise inadequate. Overall, these findings support the conclusion that a competitive fuel cycle cost and uranium utilization compared to LWRs is possible for SFRs operated on a once-through uranium fueled fuel cycle. In addition, eventual transition to TRU recycle mode is studied, as is a small test reactor to demonstrate key features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monopile foundations, currently designed using the p-y method, are technically viable in supporting larger offshore wind turbines in waters to a depth of 30 m. The p-y method was developed to better understand the behavior of laterally loaded long slender piles required for the offshore oil and gas installations. The lateral load-deformation behavior of two monopiles, 5 and 7.5 m dia, installed in soft clays of varying undrained shear strength and stiffness, was studied. A combination of axial and lateral loads expected at an offshore wind farm location with a water depth of 30 m was used in the analysis. It was established that the Matlock (1970) p-y curves are too soft and under-estimate the ultimate soil reaction at all depths except at the monopile tip. At the pile tip, the base shear was not accounted for in the p-y curves, hence resulting in the over-estimation of the soil reaction. Consequently, the Matlock (1970) p-y formulation significantly underestimates the monopile ultimate lateral capacity. The use of the Matlock (1970) p-y method would result in over-conservative designs of monopiles for offshore wind turbines. This is an abstract of a paper presented at the Offshore Technology Conference (Houston, TX 5/6-9/2013).