7 resultados para evaluation capacity building
em Cambridge University Engineering Department Publications Database
Resumo:
User-value is a determining factor for product acceptance in product design. Research on rural electrification to date, however, does not draw sufficient attention to the importance of user-value with regard to the overall success of a project. This is evident from the analysis of project reports and applicable indicators from agencies active in the sector. Learning from the design, psychology and sociology literatures, it is important that rural electrification projects incorporate the value perception of the end-user and extend their success beyond the commonly used criteria of financial value, the appropriateness of the technology, capacity building and technology uptake. Creating value for the end-user is particularly important for project acceptance and the sustainability of a scheme once it has been handed over to the local community. In this research paper, existing theories and models of value-theory are transposed and applied to community operated rural electrification schemes and a user-value framework is developed. Furthermore, the importance of value to the end-user is clarified. Current literature on product design reveals that user-value has different properties, many of which are applicable to rural electrification. Five value pillars and their sub-categories important for the users of rural electrification projects are identified, namely: functional; social significance; epistemic; emotional; and cultural values. These pillars provide the main structure for the conceptual framework developed in this research paper. It is proposed that by targeting the values of the end-user, the key factors of user-value applicable to rural electrification projects will be identified and the sustainability of the project will be better ensured. © 2014 The Authors.
Resumo:
Manual inspection is required to determine the condition of damaged buildings after an earthquake. The lack of available inspectors, when combined with the large volume of inspection work, makes such inspection subjective and time-consuming. Completing the required inspection takes weeks to complete, which has adverse economic and societal impacts on the affected population. This paper proposes an automated framework for rapid post-earthquake building evaluation. Under the framework, the visible damage (cracks and buckling) inflicted on concrete columns is first detected. The damage properties are then measured in relation to the column's dimensions and orientation, so that the column's load bearing capacity can be approximated as a damage index. The column damage index supplemented with other building information (e.g. structural type and columns arrangement) is then used to query fragility curves of similar buildings, constructed from the analyses of existing and on-going experimental data. The query estimates the probability of the building being in different damage states. The framework is expected to automate the collection of building damage data, to provide a quantitative assessment of the building damage state, and to estimate the vulnerability of the building to collapse in the event of an aftershock. Videos and manual assessments of structures after the 2009 earthquake in Haiti are used to test the parts of the framework.
Resumo:
Monopile foundations, currently designed using the p-y method, are technically viable in supporting larger offshore wind turbines in waters to a depth of 30 m. The p-y method was developed to better understand the behavior of laterally loaded long slender piles required for the offshore oil and gas installations. The lateral load-deformation behavior of two monopiles, 5 and 7.5 m dia, installed in soft clays of varying undrained shear strength and stiffness, was studied. A combination of axial and lateral loads expected at an offshore wind farm location with a water depth of 30 m was used in the analysis. It was established that the Matlock (1970) p-y curves are too soft and under-estimate the ultimate soil reaction at all depths except at the monopile tip. At the pile tip, the base shear was not accounted for in the p-y curves, hence resulting in the over-estimation of the soil reaction. Consequently, the Matlock (1970) p-y formulation significantly underestimates the monopile ultimate lateral capacity. The use of the Matlock (1970) p-y method would result in over-conservative designs of monopiles for offshore wind turbines. This is an abstract of a paper presented at the Offshore Technology Conference (Houston, TX 5/6-9/2013).
Resumo:
This paper experimentally demonstrates that, for two representative indoor distributed antenna system (DAS) scenarios, existing radio-over-fiber (RoF) DAS installations can enhance the capacity advantages of broadband 3 × 3 multiple-input-multiple-output (MIMO) radio services without requiring additional fibers or multiplexing schemes. This is true for both single-and multiple-user cases with a single base station and multiple base stations. First, a theoretical example is used to illustrate that there is a negligible improvement in signal-to-noise ratio (SNR) when using a MIMO DAS with all N spatial streams replicated at N RAUs, compared with a MIMO DAS with only one of the N streams replicated at each RAU for N ≤ 4. It is then experimentally confirmed that a 3 × 3 MIMO DAS offers improved capacity and throughput compared with a 3 × 3 MIMO collocated antenna system (CAS) for the single-user case in two typical indoor DAS scenarios, i.e., one with significant line-of-sight (LOS) propagation and the other with entirely non-line-of-sight (NLOS) propagation. The improvement in capacity is 3.2% and 4.1%, respectively. Then, experimental channel measurements confirm that there is a negligible capacity increase in the 3 × 3 configuration with three spatial streams per antenna unit over the 3 × 3 configuration with a single spatial stream per antenna unit. The former layout is observed to provide an increase of ∼1% in the median channel capacity in both the single-and multiple-user scenarios. With 20 users and three base stations, a MIMO DAS using the latter layout offers median aggregate capacities of 259 and 233 bit/s/Hz for the LOS and NLOS scenarios, respectively. It is concluded that DAS installations can further enhance the capacity offered to multiple users by multiple 3 × 3 MIMO-enabled base stations. Further, designing future DAS systems to support broadband 3 × 3 MIMO systems may not require significant upgrades to existing installations for small numbers of spatial streams. © 2013 IEEE.
Resumo:
The development of infrastructure in major cities often involves tunnelling, which can cause damage to existing structures. Therefore, these projects require a careful prediction of the risk of settlement induced damage. The simplified approach of current methods cannot account for three-dimensional structural aspects of buildings, which can result in an inaccurate evaluation of damage. This paper investigates the effect of the building alignment with the tunnel axis on structural damage. A three-dimensional, phased, fully coupled finite element model with non-linear material properties is used as a tool to perform a parametric study. The model includes the simulation of the tunnel construction process, with the tunnel located adjacent to a masonry building. Three different type of settlements are included (sagging, hogging and a combination of them), with seven different increasing angles of the building with respect to the tunnel axis. The alignment parameter is assessed, based on the maximum occurring crack width, measured in the building. Results show a significant dependency of the final damage on the building and tunnel alignment.