84 resultados para ensemble classification
em Cambridge University Engineering Department Publications Database
Resumo:
Traffic classification using machine learning continues to be an active research area. The majority of work in this area uses off-the-shelf machine learning tools and treats them as black-box classifiers. This approach turns all the modelling complexity into a feature selection problem. In this paper, we build a problem-specific solution to the traffic classification problem by designing a custom probabilistic graphical model. Graphical models are a modular framework to design classifiers which incorporate domain-specific knowledge. More specifically, our solution introduces semi-supervised learning which means we learn from both labelled and unlabelled traffic flows. We show that our solution performs competitively compared to previous approaches while using less data and simpler features. Copyright © 2010 ACM.
Resumo:
This paper is concerned with the response statistics of a dynamic system that has random properties. The frequency-band-averaged energy of the system is considered, and a closed form expression is derived for the relative variance of this quantity. The expression depends upon three parameters: the modal overlap factor m, a bandwidth parameter B, and a parameter α that defines the nature of the loading (for example single point forcing or rain-on-the-roof loading). The result is applicable to any single structural component or acoustic volume, and a comparison is made here with simulation results for a mass loaded plate. Good agreement is found between the simulations and the theory. © 2003 Published by Elsevier Ltd.
Resumo:
This paper is concerned with the ensemble statistics of the response to harmonic excitation of a single dynamic system such as a plate or an acoustic volume. Random point process theory is employed, and various statistical assumptions regarding the system natural frequencies are compared, namely: (i) Poisson natural frequency spacings, (ii) statistically independent Rayleigh natural frequency spacings, and (iii) natural frequency spacings conforming to the Gaussian orthogonal ensemble (GOE). The GOE is found to be the most realistic assumption, and simple formulae are derived for the variance of the energy of the system under either point loading or rain-on-the-roof excitation. The theoretical results are compared favourably with numerical simulations and experimental data for the case of a mass loaded plate. © 2003 Elsevier Ltd. All rights reserved.