15 resultados para energy value
em Cambridge University Engineering Department Publications Database
Resumo:
The embodied energy (EE) and gas emissions of four design alternatives for an embankment retaining wall system are analyzed for a hypothetical highway construction project. The airborne emissions considered are carbon dioxide (CO 2), methane (CH 4), nitrous oxide (N 2O), sulphur oxides (SO X), and nitrogen oxides (NO X). The process stages considered in this study are the initial materials production, transportation of construction machineries and materials, machinery operation during installation, and machinery depreciations. The objectives are (1) to determine whether there are statistically significant differences among the structural alternatives; (2) to understand the relative proportions of impacts for the process stages within each design; (3) to contextualize the impacts to other aspects in life by comparing the computed EE values to household energy consumption and car emission values; and (4) to examine the validity of the adopted EE as an environmental impact indicator through comparison with the amount of gas emissions. For the project considered in this study, the calculated results indicate that propped steel sheet pile wall and minipile wall systems have less embodied energy and gas emissions than cantilever steel tubular wall and secant concrete pile wall systems. The difference in CO 2 emission for the retaining wall of 100 m length between the most and least environmentally preferable wall design is equivalent to an average 2.0 L family car being driven for 6.2 million miles (or 62 cars with a mileage of 10,000 miles/year for 10 years). The impacts in construction are generally notable and careful consideration and optimization of designs will reduce such impacts. The use of recycled steel or steel pile as reinforcement bar is effective in reducing the environmental impact. The embodied energy value of a given design is correlated to the amount of gas emissions. © 2011 American Society of Civil Engineers.
Resumo:
The effects of damping on energy sharing in coupled systems are investigated. The approach taken is to compute the forced response patterns of various idealised systems, and from these to calculate the parameters of Statistical Energy Analysis model for the systems using the matrix inversion approach [1]. It is shown that when SEA models are fitted by this procedure, the values of the coupling loss factors are significantly dependent on damping except when it is sufficiently high. For very lightly damped coupled systems, varying the damping causes the values of the coupling loss factor to vary in direct proportion to the internal loss factor. In the limit of zero damping, the coupling loss factors tend to zero. This is a view which contrasts strongly with 'classical' SEA, in which coupling loss factors are determined by the nature of the coupling between subsystems, independent of subsystem damping. One implication of the strong damping dependency is that equipartition of modal energy under low damping does not in general occur. This is contrary to the classical SEA prediction that equipartition of modal energy always occurs if the damping can be reduced to a sufficiently small value. It is demonstrated that the use of this classical assumption can lead to gross overestimates of subsystem energy ratios, especially in multi-subsystem structures. © 1996 Academic Press Limited.
Resumo:
The detailed understanding of the electronic properties of carbon-based materials requires the determination of their electronic structure and more precisely the calculation of their joint density of states (JDOS) and dielectric constant. Low electron energy loss spectroscopy (EELS) provides a continuous spectrum which represents all the excitations of the electrons within the material with energies ranging between zero and about 100 eV. Therefore, EELS is potentially more powerful than conventional optical spectroscopy which has an intrinsic upper information limit of about 6 eV due to absorption of light from the optical components of the system or the ambient. However, when analysing EELS data, the extraction of the single scattered data needed for Kramers Kronig calculations is subject to the deconvolution of the zero loss peak from the raw data. This procedure is particularly critical when attempting to study the near-bandgap region of materials with a bandgap below 1.5 eV. In this paper, we have calculated the electronic properties of three widely studied carbon materials; namely amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C) and C60 fullerite crystal. The JDOS curve starts from zero for energy values below the bandgap and then starts to rise with a rate depending on whether the material has a direct or an indirect bandgap. Extrapolating a fit to the data immediately above the bandgap in the stronger energy loss region was used to get an accurate value for the bandgap energy and to determine whether the bandgap is direct or indirect in character. Particular problems relating to the extraction of the single scattered data for these materials are also addressed. The ta-C and C60 fullerite materials are found to be direct bandgap-like semiconductors having a bandgaps of 2.63 and 1.59eV, respectively. On the other hand, the electronic structure of a-C was unobtainable because it had such a small bandgap that most of the information is contained in the first 1.2 eV of the spectrum, which is a region removed during the zero loss deconvolution.
Resumo:
The electricity sectors of many developing countries underwent substantial reforms during the 1980s and 1990s, driven by global agendas of privatization and liberalization. However, rural electrification offered little by way of market incentives for profit-seeking private companies and was often neglected. As a consequence, delivery models for rural electrification need to change. This paper will review the experiences of various rural electrification delivery models that have been established in developing countries, including concessionary models, dealership approaches and the strengthening of small and medium-sized energy businesses. It will use examples from the USA, Bangladesh and Nepal, together with a detailed case study of a Nepali rural electric cooperative, to explore the role that local cooperatives can play in extending electricity access. It is shown that although there is no magic bullet solution to deliver rural electrification, if offered appropriate financial and institutional support, socially orientated cooperative businesses can be a willing, efficient and effective means of extending and managing rural electricity services. It is expected that this paper will be of particular value to policy-makers, donors, project planners and implementers currently working in the field of rural electrification. © 2010 Elsevier Ltd.
Resumo:
α-(Yb1-xErx)2Si2O7 thin films on Si substrates were synthesized by magnetron co-sputtering. The optical emission from Er3+ ions has been extensively investigated, evidencing the very efficient role of Yb-Er coupling. The energy-transfer coefficient was evaluated for an extended range of Er content (between 0.2 and 16.5 at.%) reaching a maximum value of 2 × 10⁻¹⁶ cm⁻³s⁻¹. The highest photoluminescence emission at 1535 nm is obtained as a result of the best compromise between the number of Yb donors (16.4 at.%) and Er acceptors (1.6 at.%), for which a high population of the first excited state is reached. These results are very promising for the realization of 1.54 μm optical amplifiers on a Si platform.
Resumo:
Construction of geotechnical structures produces various environmental impacts. These include depletion of limited natural resources, generation of wastes and harmful substances during material productions and construction, ineffective usage of energy during processing of raw materials into construction materials, and emissions of unwanted gasses during transportation of materials and usage of equipments. With increasing interests in sustainability at the global scale, there is a need to develop a methodology that can assess environmental impacts at such scale for geotechnical construction. Using embodied energy and gas emission, quantitative measures of environmental impact are evaluated using a case study of a new high speed railway line construction in the UK. Based on the results, the keys to energy savings are (a) to optimise the usage of materials with high embodied energy intensity value (b) to optimise the transportation network and logistics for processes using primarily low embodied energy intensity materials and (c) to reuse as much materials on-site as possible to minimise the quantity of spoils or distance to disposal sites. The evaluated embodied energy and embodied carbon values are compared to those of other types of structures and of other activities and carbon tax values. Such comparisons can be used to discuss among various interested parties (clients, contractors, consultants, policy makers, etc) to make the construction industry more energy efficient. © Springer Science+Business Media B.V. 2011.
Resumo:
Energy performance labelling and certification have been introduced widely to address market failures affecting the uptake of energy efficient technologies, by providing a signal to support decision making during contracting processes. The UK has recently introduced the Energy Performance Certificate (EPC) as a signal of building energy performance. The aims of this article are: to evaluate how valid EPC's are signals of occupier satisfaction with office facilities; and to understand whether occupant attitudes towards environmental issues have affected commercial office rental values. This was achieved by surveying occupant satisfaction with their workplaces holistically using a novel multi-item rating scale which gathered 204 responses. Responses to this satisfaction scale were matched with the corresponding EPC and rental value of occupier's workplaces. The satisfaction scale was found to be both a reliable and valid measure. The analysis found that EPC asset rating correlates significantly with occupant satisfaction with all facility attributes. Therefore, EPC ratings may be considered valid signals of overall facility satisfaction within the survey sample. Rental value was found to correlate significantly only with facility aesthetics. No evidence suggests rental value has been affected by occupants' perceptions towards the environmental impact of facilities. © 2013 The Authors.
Resumo:
It is well known that the power absorbed by a linear oscillator when excited by white noise base acceleration depends only on the mass of the oscillator and the spectral density of the base motion. This places an upper bound on the energy that can be harvested from a linear oscillator under broadband excitation, regardless of the stiffness of the system or the damping factor. It is shown here that the same result applies to any multi-degree-of-freedom nonlinear system that is subjected to white noise base acceleration: for a given spectral density of base motion the total power absorbed is proportional to the total mass of the system. The only restriction to this result is that the internal forces are assumed to be a function of the instantaneous value of the state vector. The result is derived analytically by several different approaches, and numerical results are presented for an example two-degree-of-freedom-system with various combinations of linear and nonlinear damping and stiffness. © 2013 The Author.
Resumo:
This paper investigates the fundamental trade-offs involved in designing energy-regenerative suspensions, in particular, focusing on efficiency of power extraction and its effect on vehicle dynamics and control. It is shown that typical regenerative devices making use of linear-to-rotational elements can be modelled as a parallel arrangement of an inerter and a dissipative admittance. Taking account of typical adjustable parameters of the generator, it is shown, for a given suspension damping coefficient, that the power efficiency ratio scales with inertance. For a typical passenger vehicle, it is shown that there is a feasible compromise, namely that good efficiency is achievable with an inertance value that is not detrimental to vehicle performance. A prototype is designed and tested with a resistive termination and experimental results show good agreement between ideal and experimental admittances. The possibility to use dynamic (rather than purely resistive) loads to improve vehicle control without limiting the energy recovery is discussed. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Pico-PV is an excellent technology for bringing electric light to rural areas in the developing world and replacing kerosene lanterns and candles. However, as pico-PV is a comparatively new technology, relatively little is known about appropriate methods for sustainable product development and deployment. For this reason current dissemination methods are often ineffective and unsustainable. This research aims to help project developers deploy pico-PV technologies successfully and in a sustainable manner. To achieve this, a conceptual framework of key sustainability criteria along the value chain was developed and tested. The analysis revealed that the most important criteria for the sustainable deployment of pico-PV systems are: (a) easy and safe operation of the product; (b) that a system for product return is established; (c) the retailer understands the target market and (d) the end-user is aware of the product's existence and its benefits. This research reveals that criteria (b) and (c) are of greatest concern. In light of these findings, the authors propose to focus on the following five factors; namely: (a) raising awareness for certification and creating market reassurance; (b) introducing support mechanisms to facilitate local repair; (c) using existing supply channels and establishing in-country (dis)assembly; (d) introducing financial support mechanisms at product supply stages and; (e) undertaking marketing campaigns. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper is concerned with the development of efficient algorithms for propagating parametric uncertainty within the context of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) approach to the analysis of complex vibro-acoustic systems. This approach models the system as a combination of SEA subsystems and FE components; it is assumed that the FE components have fully deterministic properties, while the SEA subsystems have a high degree of randomness. The method has been recently generalised by allowing the FE components to possess parametric uncertainty, leading to two ensembles of uncertainty: a non-parametric one (SEA subsystems) and a parametric one (FE components). The SEA subsystems ensemble is dealt with analytically, while the effect of the additional FE components ensemble can be dealt with by Monte Carlo Simulations. However, this approach can be computationally intensive when applied to complex engineering systems having many uncertain parameters. Two different strategies are proposed: (i) the combination of the hybrid FE/SEA method with the First Order Reliability Method which allows the probability of the non-parametric ensemble average of a response variable exceeding a barrier to be calculated and (ii) the combination of the hybrid FE/SEA method with Laplace's method which allows the evaluation of the probability of a response variable exceeding a limit value. The proposed approaches are illustrated using two built-up plate systems with uncertain properties and the results are validated against direct integration, Monte Carlo simulations of the FE and of the hybrid FE/SEA models. © 2013 Elsevier Ltd.
Resumo:
User-value is a determining factor for product acceptance in product design. Research on rural electrification to date, however, does not draw sufficient attention to the importance of user-value with regard to the overall success of a project. This is evident from the analysis of project reports and applicable indicators from agencies active in the sector. Learning from the design, psychology and sociology literatures, it is important that rural electrification projects incorporate the value perception of the end-user and extend their success beyond the commonly used criteria of financial value, the appropriateness of the technology, capacity building and technology uptake. Creating value for the end-user is particularly important for project acceptance and the sustainability of a scheme once it has been handed over to the local community. In this research paper, existing theories and models of value-theory are transposed and applied to community operated rural electrification schemes and a user-value framework is developed. Furthermore, the importance of value to the end-user is clarified. Current literature on product design reveals that user-value has different properties, many of which are applicable to rural electrification. Five value pillars and their sub-categories important for the users of rural electrification projects are identified, namely: functional; social significance; epistemic; emotional; and cultural values. These pillars provide the main structure for the conceptual framework developed in this research paper. It is proposed that by targeting the values of the end-user, the key factors of user-value applicable to rural electrification projects will be identified and the sustainability of the project will be better ensured. © 2014 The Authors.