138 resultados para electro-thermal
em Cambridge University Engineering Department Publications Database
Resumo:
This paper presents the application of advanced compact models of the IGBT and PIN diode to the full electrothermal system simulation of a hybrid electric vehicle converter using a look-up table of device losses. The Fourier-based solution model is used, which takes account of features such as local lifetime control and field-stop technology. Device and circuit parameters are extracted from experimental waveforms and device structural data. Matching of the switching waveforms and the resulting generation of the look-up table is presented. An example of the use of the look-up tables in simulation of inverter device temperatures is also given, for a hypothetical electric vehicle subjected to an urban driving cycle. © 2006 IEEE.
Resumo:
This paper describes a new generation of integrated solid-state gas-sensors embedded in SOI micro-hotplates. The micro-hotplates lie on a SOI membrane and consist of MOSFET heaters that elevate the operating temperature, through self-heating, of a gas sensitive material. These sensors are fully compatible with SOI CMOS or BiCMOS technologies, offer ultra-low power consumption (under 100 mW), high sensitivity, low noise, low unit cost, reproducibility and reliability through the use of on-chip integration. In addition, the new integrated sensors offer a nearly uniform temperature distribution over the active area at its operating temperatures at up to about 300-350°C. This makes SOI-based gas-sensing devices particularly attractive for use in handheld battery-operated gas monitors. This paper reports on the design of a chemo-resistive gas sensor and proposes for the first time an intelligent SOI membrane microcalorimeter using active micro-FET heaters and temperature sensors. A comprehensive set of numerical and analogue simulations is also presented including complex 2D and 3D electro-thermal numerical analyses. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This paper describes multiple field-coupled simulations and device characterization of fully CMOS-MEMS-compatible smart gas sensors. The sensor structure is designated for gas/vapour detection at high temperatures (>300 °C) with low power consumption, high sensitivity and competent mechanic robustness employing the silicon-on-insulator (SOI) wafer technology, CMOS process and micromachining techniques. The smart gas sensor features micro-heaters using p-type MOSFETs or polysilicon resistors and differentially transducing circuits for in situ temperature measurement. Physical models and 3D electro-thermo-mechanical simulations of the SOI micro-hotplate induced by Joule, self-heating, mechanic stress and piezoresistive effects are provided. The electro-thermal effect initiates and thus affects electronic and mechanical characteristics of the sensor devices at high temperatures. Experiments on variation and characterization of micro-heater resistance, power consumption, thermal imaging, deformation interferometry and dynamic thermal response of the SOI micro-hotplate have been presented and discussed. The full integration of the smart gas sensor with automatically temperature-reading ICs demonstrates the lowest power consumption of 57 mW at 300 °C and fast thermal response of 10 ms. © 2008 IOP Publishing Ltd.
Resumo:
The recent developments in SiC PiN diode research mean that physics-based models that allow accurate, rapid prediction of switching and conduction performance and resulting converter losses will soon be required. This is especially the case given the potential for very high voltage converters to be used for enabling distributed and renewable power generation. In this work an electro-thermal compact model of a 4.5 kV silicon carbide PiN diode has been developed for converter loss modelling in Simulink. Good matching of reverse recovery has been achieved between 25 and 200 °C. The I-V characteristics of the P+ anode contact have been shown to be significant in obtaining good matching for the forward characteristics of the diode, requiring further modelling work in this area. © 2009 IEEE.
Resumo:
In this paper we present for the first time, a novel silicon on insulator (SOI) complementary metal oxide semiconductor (CMOS) MEMS thermal wall shear stress sensor based on a tungsten hot-film and three thermopiles. These devices have been fabricated using a commercial 1 μm SOI-CMOS process followed by a deep reactive ion etch (DRIE) back-etch step to create silicon oxide membranes under the hot-film for effective thermal isolation. The sensors show an excellent repeatability of electro-thermal characteristics and can be used to measure wall shear stress in both constant current anemometric as well as calorimetric modes. The sensors have been calibrated for wall shear stress measurement of air in the range of 0-0.48 Pa using a suction type, 2-D flow wind tunnel. The calibration results show that the sensors have a higher sensitivity (up to four times) in calorimetric mode compared to anemometric mode for wall shear stress lower than 0.3 Pa. © 2013 IEEE.