4 resultados para effective atomic number
em Cambridge University Engineering Department Publications Database
Resumo:
This paper presents a simple, cost-effective and robust atomic force microscope (AFM), which has been purposely designed and built for use as a teaching aid in undergraduate controls labs. The guiding design principle is to have all components be open and visible to the students, so the inner functioning of the microscope has been made clear to see. All of the parts but one are off the shelf, and assembly time is generally less than two days, which makes the microscope a robust instrument that is readily handled by the students with little chance of damage. While the scanning resolution is nowhere near that of a commercial instrument, it is more than sufficient to take interesting scans of micrometer-scale objects. A survey of students after their having used the AFM resulted in a generally good response, with 80% agreeing that they had a positive learning experience. © 2009 IEEE.
Resumo:
Effective dialogue management is critically dependent on the information that is encoded in the dialogue state. In order to deploy reinforcement learning for policy optimization, dialogue must be modeled as a Markov Decision Process. This requires that the dialogue statemust encode all relevent information obtained during the dialogue prior to that state. This can be achieved by combining the user goal, the dialogue history, and the last user action to form the dialogue state. In addition, to gain robustness to input errors, dialogue must be modeled as a Partially Observable Markov Decision Process (POMDP) and hence, a distribution over all possible states must be maintained at every dialogue turn. This poses a potential computational limitation since there can be a very large number of dialogue states. The Hidden Information State model provides a principled way of ensuring tractability in a POMDP-based dialogue model. The key feature of this model is the grouping of user goals into partitions that are dynamically built during the dialogue. In this article, we extend this model further to incorporate the notion of complements. This allows for a more complex user goal to be represented, and it enables an effective pruning technique to be implemented that preserves the overall system performance within a limited computational resource more effectively than existing approaches. © 2011 ACM.
Resumo:
The understanding of low Reynolds number aerodynamics is becoming increasingly prevalent with the recent surge in interest in advanced Micro-Air Vehicle (MAV) technology. Research in this area has been primarily stimulated by a military need for smaller, more versatile, autonomous, surveillance aircraft. The mechanism for providing the high lift coefficient required forMAV applications is thought to be largely influenced by the formation of a Leading Edge Vortex (LEV). This paper analyses experimentally, the influence of the LEV effect for a flat plate wing (AR = 4) under fast and slow pitch-up motions at Re =10,000 using a combination of dye flow visualisation and PIV measurements. It is found that a fast pitch over 1c shows a flow topology dominant LEV, while for a slow pitch case over 6c, the flow is largely separated. The development of the suction surface flow and the LEV was strongly correlated with the kinematics of the leading edge, suggesting that the effective local angle of incidence at the Leading Edge (LE) is of considerable significance in unsteady pitching motions. © 2013 by P.R.R.J Stevens.
Resumo:
We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage. © 2014 AIP Publishing LLC.