3 resultados para effective approaches

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective dialogue management is critically dependent on the information that is encoded in the dialogue state. In order to deploy reinforcement learning for policy optimization, dialogue must be modeled as a Markov Decision Process. This requires that the dialogue statemust encode all relevent information obtained during the dialogue prior to that state. This can be achieved by combining the user goal, the dialogue history, and the last user action to form the dialogue state. In addition, to gain robustness to input errors, dialogue must be modeled as a Partially Observable Markov Decision Process (POMDP) and hence, a distribution over all possible states must be maintained at every dialogue turn. This poses a potential computational limitation since there can be a very large number of dialogue states. The Hidden Information State model provides a principled way of ensuring tractability in a POMDP-based dialogue model. The key feature of this model is the grouping of user goals into partitions that are dynamically built during the dialogue. In this article, we extend this model further to incorporate the notion of complements. This allows for a more complex user goal to be represented, and it enables an effective pruning technique to be implemented that preserves the overall system performance within a limited computational resource more effectively than existing approaches. © 2011 ACM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Healthcare systems worldwide face a wide range of challenges, including demographic change, rising drug and medical technology costs, and persistent and widening health inequalities both within and between countries. Simultaneously, issues such as professional silos, static medical curricula, and perceptions of "information overload" have made it difficult for medical training and continued professional development (CPD) to adapt to the changing needs of healthcare professionals in increasingly patient-centered, collaborative, and/or remote delivery contexts. In response to these challenges, increasing numbers of medical education and CPD programs have adopted e-learning approaches, which have been shown to provide flexible, low-cost, user-centered, and easily updated learning. The effectiveness of e-learning varies from context to context, however, and has also been shown to make considerable demands on users' motivation and "digital literacy" and on providing institutions. Consequently, there is a need to evaluate the effectiveness of e-learning in healthcare as part of ongoing quality improvement efforts. This article outlines the key issues for developing successful models for analyzing e-health learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Healthcare systems worldwide face a wide range of challenges, including demographic change, rising drug and medical technology costs, and persistent and widening health inequalities both within and between countries. Simultaneously, issues such as professional silos, static medical curricula, and perceptions of "information overload" have made it difficult for medical training and continued professional development (CPD) to adapt to the changing needs of healthcare professionals in increasingly patient-centered, collaborative, and/or remote delivery contexts. In response to these challenges, increasing numbers of medical education and CPD programs have adopted e-learning approaches, which have been shown to provide flexible, low-cost, user-centered, and easily updated learning. The effectiveness of e-learning varies from context to context, however, and has also been shown to make considerable demands on users' motivation and "digital literacy" and on providing institutions. Consequently, there is a need to evaluate the effectiveness of e-learning in healthcare as part of ongoing quality improvement efforts. This article outlines the key issues for developing successful models for analyzing e-health learning.