42 resultados para dynamic strain induced

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a silicon optical phase shifter based on photoelastic effect controlled by a piezoelectric thin film. The hysteresis behavior of the piezoelectric response shows potential application as bistable device independent of the optical intensity. © 2012 OSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a silicon optical phase shifter based on photoelastic effect controlled by a piezoelectric thin film. The hysteresis behavior of the piezoelectric response shows potential application as bistable device independent of the optical intensity. © OSA 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate bistability in a submicron silicon optical phase shifter based on the photoelastic effect. The strain magnitude is electrically controlled by a piezoelectric thin film placed on top of the device. The hysteresis behavior of the piezoelectric response shows potential application as bistable device independent of the optical intensity. © 2012 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cold-worked austenitic stainless steels have been subject to a pulsed electrochemical treatment in fairly concentrated aqueous solutions of sodium nitrite. The electrochemical reactions that occur transform the strain-induced martensite phase, originally formed by the cold work, back to the austenite phase. However, unlike the conventional thermal annealing process, electrochemically induced surface annealing also hardens the surface of the alloy. Because the process causes transformation of the surface martensite, we term it "electrochemical surface annealing", despite the fact that it results in an increase in surface hardness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The geometric alignment of turbulent strain-rate structures with premixed flames greatly influences the results of the turbulence-flame interaction. Here, the statistics and dynamics of this alignment are experimentally investigated in turbulent premixed Bunsen flames using high-repetition-rate stereoscopic particle image velocimetry. In all cases, the statistics showed that the most extensive principal strain-rate associated with the turbulence preferentially aligned such that it was more perpendicular than parallel to the flame surface normal direction. The mean turbulence-flame alignment differed between the flames, with the stronger flames (higher laminar flame speed) exhibiting stronger preferential alignment. Furthermore, the preferential alignment was greatest on the reactant side of the mean flame brush. To understand these differences, individual structures of fluid-dynamic strain-rate were tracked through time in a Lagrangian manner (i.e., by following the fluid elements). It was found that the flame surface affected the orientation of the turbulence structures, with the majority of structures rotating as they approached the flame such that their most extensive principal strain-rate was perpendicular to the flame normal. The maximum change in turbulent structure orientation was found to decrease with the strength of the structure, increase with the strength of the flame, and exhibit similar trends when the structure strength and flame strength were represented by a Karlovitz number. The mean change in orientation decreased from the unburnt to burnt side of the flame brush and appears to be influenced by the overall flame shape. © 2011 The Combustion Institute.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We perform polarization-resolved Raman spectroscopy on graphene in magnetic fields up to 45 T. This reveals a filling-factor-dependent, multicomponent anticrossing structure of the Raman G peak, resulting from magnetophonon resonances between magnetoexcitons and E2g phonons. This is explained with a model of Raman scattering taking into account the effects of spatially inhomogeneous carrier densities and strain. Random fluctuations of strain-induced pseudomagnetic fields lead to increased scattering intensity inside the anticrossing gap, consistent with the experiments. © 2013 American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Herein we report on the transport characteristics of rapid pulsed vacuum-arc thermally annealed, individual and network multi-walled carbon nanotubes. Substantially reduced defect densities (by at least an order of magnitude), measured by micro-Raman spectroscopy, and were achieved by partial reconstruction of the bamboo-type defects during thermal pulsing compared with more traditional single-pulse thermal annealing. Rapid pulsed annealed processed networks and individual multi-walled nanotubes showed a consistent increase in conductivity (of over a factor of five at room temperature), attributed to the reduced number density of resistive axial interfaces and, in the case of network samples, the possible formation of structural bonds between crossed nanotubes. Compared to the highly defective as-grown nanotubes, the pulsed annealed samples exhibited reduced temperature sensitivity in their transport characteristics signifying the dominance of scattering events from structural defects. Transport measurements in the annealed multi-walled nanotubes deviated from linear Ohmic, typically metallic, behavior to an increasingly semiconducting-like behavior attributed to thermally induced axial strains. Rapid pulsed annealed networks had an estimated band gap of 11.26 meV (as-grown; 6.17 meV), and this observed band gap enhancement was inherently more pronounced for individual nanotubes compared with the networks most likely attributed to mechanical pinning effect of the probing electrodes which possibly amplifies the strain induced band gap. In all instances the estimated room temperature band gaps increased by a factor of two. The gating performance of back-gated thin-film transistor structures verified that the observed weak semiconductivity (p-type) inferred from the transport characteristic at room temperature. © 2014 Copyright Taylor & Francis Group, LLC.