17 resultados para dynamic methods

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theory is presented for simulating the dynamic wheel forces generated by heavy road vehicles and the resulting dynamic response of road surfaces to these loads. Sample calculations are provided and the vehicle simulation is validated with data from full-scale tests. The methods are used in the accompanying paper to simulate the road damage done by a tandem-axle vehicle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The literature relating to road surface failure and design is briefly reviewed and the conventional methods for assessing the road damaging effects of dynamic tire forces are examined. A new time domain technique for analyzing dynamic tire forces and four associated road damage criteria are presented. The force criteria are used to examine the road damaging characteristics of a simple tandem-axle vehicle model for a range of speed and road roughness conditions. It is concluded that for the proposed criteria, the theoretical service life of road surfaces that are prone to fatigue failure may be reduced significantly by the dynamic component of wheel forces. The damage done to approximately five per cent of the road surface area during the passage of a theoretical model vehicle at typical highway speeds may be increased by as much as four times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Residential RC framed structures suffered heavily during the 2001 Bhuj earthquake in Gujarat, India. These types of structures also saw severe damage in other earthquakes such as the 1999 Kocaeli earthquake in Turkey and 921 Ji-Ji earthquake in Taiwan. In this paper the seismic response of residential structures was investigated using physical modelling. Idealised soft storey and top heavy, two degrees of freedom (2DOF) portal frame structures were developed and tested on saturated and dry sand models at 25 g using the Schofield Centre 10-m Beam Centrifuge. It was possible to recreate observed field behaviour using these models. As observed in many of the recent earthquakes, soft storey structures were found to be particularly vulnerable to seismic loads. Elastic response spectra methods are often used in the design of simple portal frame structures. The seismic risk of these structures can be significantly increased due to modifications such as removal of a column or addition of heavy water tanks on the roof. The experimental data from the dynamic centrifuge tests on such soft storey or top-heavy models was used to evaluate the predictions obtained from the response spectra. Response spectra were able to predict seismic response during small to moderate intensity earthquakes, but became inaccurate during strong earthquakes and when soil structure interaction effects became important. Re-evaluation of seismic risk of such modified structures is required and time domain analyses suggested by building codes such as IBC, UBC or NEHRP may be more appropriate. © Springer 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamic analysis of a deepwater floating platform and the associated mooring/riser system should ideally be fully coupled to ensure a reliable response prediction. It is generally held that a time domain analysis is the only means of capturing the various coupling and nonlinear effects accurately. However, in recent work it has been found that for an ultra-deepwater floating system (2000m water depth), the highly efficient frequency domain approach can provide highly accurate response predictions. One reason for this is the accuracy of the drag linearization procedure over both first and second order motions, another reason is the minimal geometric nonlinearity displayed by the mooring lines in deepwater. In this paper, the aim is to develop an efficient analysis method for intermediate water depths, where both mooring/vessel coupling and geometric nonlinearity are of importance. It is found that the standard frequency domain approach is not so accurate for this case and two alternative methods are investigated. In the first, an enhanced frequency domain approach is adopted, in which line nonlinearities are linearized in a systematic way. In the second, a hybrid approach is adopted in which the low frequency motion is solved in the time domain while the high frequency motion is solved in the frequency domain; the two analyses are coupled by the fact that (i) the low frequency motion affects the mooring line geometry for the high frequency motion, and (ii) the high frequency motion affects the drag forces which damp the low frequency motion. The accuracy and efficiency of each of the methods are systematically compared. Copyright © 2007 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil liquefaction continues to be a major source of damage to buildings and infrastructure after major earthquake events. Ground improvement methods are widely used at many sites worldwide as a way of mitigating liquefaction damage. The relative success of these ground improvement methods in preventing damage after a liquefaction event and the mechanisms by which they can mitigate liquefaction continue to be areas of active research. In this paper the emphasis is on the use of dynamic centrifuge modelling as a tool to investigate the effectiveness of ground improvement methods in mitigating liquefaction risk. Three different ground improvement methods will be considered. First, the effectiveness of in situ densification as a liquefaction resistance measure will be investigated. It will be shown that the mechanism by which soil densification offers mitigation of the liquefaction risk can be studied at a fundamental level using dynamic centrifuge modelling. Second, the use of drains to relieve excess pore pressures generated during an earthquake event will be considered. It will be shown that current design methods can be further improved by incorporating the understanding obtained from dynamic centrifuge tests. Finally, the use of soil grouting to mitigate liquefaction risk will be investigated. It will be shown that by grouting the foundation soil, the settlement of a building can be reduced following earthquake loading. However, the grouting depth must extend the whole depth of the liquefiable layer to achieve this reduction in settlements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite use of the best in current design practices, high-speed shaft (HSS) bearings, in a wind-turbine gearbox, continue to exhibit a high rate of premature failure. As HSS bearings operate under low loads and high speeds, these bearings are prone to skidding. However, most of the existing methods for analyzing skidding are quasi-static in nature and cannot be used to study dynamic operating conditions. This paper proposes a dynamic model, which includes gyroscopic and centrifugal effects, to study the skidding characteristics of angular-contact ball-bearings. Traction forces between rolling-elements and raceways are obtained using elastohydrodynamic (EHD) lubrication theory. Underlying gross-sliding mechanisms for pure axial loads, and combined radial and axial loads are also studied. The proposed model will enable engineers to improve bearing reliability at the design stage, by estimating the amount of skidding. © 2011 Published under licence by IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid thermal annealing of arsenic and boron difluoride implants, such as those used for source/drain regions in CMOS, has been carried out using a scanning electron beam annealer, as part of a study of transient diffusion effects. Three types of e-beam anneal have been performed, with peak temperatures in the range 900 -1200 degree C; the normal isothermal e-beam anneals, together with sub-second fast anneals and 'dual-pulse' anneals, in which the sample undergoes an isothermal pre-anneal followed by rapid heating to the required anneal temperature is less than 0. 5s. The diffusion occuring during these anneal cycles has been modelled using SPS-1D, an implant and diffusion modelling program developed by one of the authors. This has been modified to incorporate simulated temperature vs. time cycles for the anneals. Results are presented applying the usual equilibrium clustering model, a transient point-defect enhancement to the diffusivity proposed recently by Fair and a new dynamic clustering model for arsenic. Good agreement with SIMS measurements is obtained using the dynamic clustering model, without recourse to a transient defect model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Failure of retaining walls is observed after many recent seismic events. Design of these walls are based on the pseudo-static force designs based on the Mononobe-Okabe earth pressure coefficient equations. However, it is clear that there are limitations attached with this approach. This paper investigates the seismic behaviour of sheet pile retaining walls using dynamic centrifuge testing facilities. In addition to using bending moment strain gauges on the wall, new generation earth pressure cells have also been used to investigate the generation of active and passive earth pressures. The results indicate that Mononobe-Okabe equations give relatively good estimates of active earth pressures but may be over-predicting passive earth pressures at certain peak ground acceleration levels. Based on this series of centrifuge tests it is concluded that earth pressure cells are successful in providing good qualitative data, but need to be supplemented by good calibration methods. © 2010 Taylor & Francis Group, London.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Particle Image Velocimetry (PIV) technique is an image processing tool to obtain instantaneous velocity measurements during an experiment. The basic principle of PIV analysis is to divide the image into small patches and calculate the locations of the individual patches in consecutive images with the help of cross correlation functions. This paper focuses on the application of the PIV analysis in dynamic centrifuge tests on small scale tunnels in loose, dry sand. Digital images were captured during the application of the earthquake loading on tunnel models using a fast digital camera capable of taking digital images at 1000 frames per second at 1 Megapixel resolution. This paper discusses the effectiveness of the existing methods used to conduct PIV analyses on dynamic centrifuge tests. Results indicate that PIV analysis in dynamic testing requires special measures in order to obtain reasonable deformation data. Nevertheless, it was possible to obtain interesting mechanisms regarding the behaviour of the tunnels from PIV analyses. © 2010 Taylor & Francis Group, London.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increments of internal forces induced in a tunnel lining during earthquakes can be assessed with several procedures at different levels of complexity. However, the substantial lack of well-documented case histories still represents a difficulty in order to validate any of the methods proposed in literature. To bridge this gap, centrifuge model tests were carried out on a circular aluminium tunnel located at two different depths in dense and loose dry sand. Each model has been instrumented for measuring soil motion and internal loads in the lining and tested under several dynamic input signals. The tests performed represented an experimental benchmark to calibrate dynamic analyses with different approaches to account for soil-tunnel kinematic interaction. © 2009 IOS Press.