98 resultados para dye-doped polymer optical fiber

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The excitation as well as relaxation dynamics of dye-doped nematic liquid crystal cells has been explored both experimentally and theoretically. Overshoots in the build up of the probe signal diffracted from gratings written onto dye-doped liquid crystal systems have often been observed. The overshoot behaviour makes the accurate measurement of nonlinear optical (NLO) response magnitude difficult and ambiguous. Moreover, it complicates the understanding of the dynamics and the physics of the NLO processes. On the basis of the system with trans-cis isomerisation as a mechanism of the NLO effect the quantitative model has been built to describe the experimental results which we observe. The two unknown material parameters: diffusion coefficient and cis species lifetime are calculated from the relaxation data. A quantitative model of the signal build-up uses these parameters. The calculated dynamic behaviour based on this model correlates very well with the experimental data. The model is used to predict the performance of the system with various dopant diffusion properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We calculate the density of photon states (DOS) of the normal modes in dye-doped chiral nematic liquid crystal (LC) cells in the presence of various loss mechanisms. Losses and gain are incorporated into the transmission characteristics through the introduction of a small imaginary part in the dielectric constant perpendicular and along the director, for which we assume no frequency dispersion. Theoretical results are presented on the DOS in the region of the photonic band gap for a range of values of the loss coefficient and different values of the optical anisotropy. The obtained values of the DOS at the photonic band gap edges predict a reversal of the dominant modes in the structure. Our results are found to be in good agreement with the experimentally obtained excitation thresholds in chiral nematic LC lasers. The behavior of the DOS is also discussed for amplifying LC cells providing additional insight to the lasing mechanism of these structures. © 2012 American Physical Society.