125 resultados para double-mutant thermodynamic cycles

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salmonella enterica sv. typhimurium (S. enterica sv. Typhimurium) has two metal-transporting P(1)-type ATPases whose actions largely overlap with respect to growth in elevated copper. Mutants lacking both ATPases over-accumulate copper relative to wild-type or either single mutant. Such duplication of ATPases is unusual in bacterial copper tolerance. Both ATPases are under the control of MerR family metal-responsive transcriptional activators. Analyses of periplasmic copper complexes identified copper-CueP as one of the predominant metal pools. Expression of cueP was recently shown to be controlled by the same metal-responsive activator as one of the P(1)-type ATPase genes (copA), and copper-CueP is a further atypical feature of copper homeostasis in S. enterica sv. Typhimurium. Elevated copper is detected by a reporter construct driven by the promoter of copA in wild-type S. enterica sv. Typhimurium during infection of macrophages. Double mutants missing both ATPases also show reduced survival inside cultured macrophages. It is hypothesized that elevated copper within macrophages may have selected for specialized copper-resistance systems in pathogenic microorganism such as S. enterica sv. Typhimurium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a novel approach to the design and fabrication of a high temperature inverter module for hybrid electrical vehicles is presented. Firstly, SiC power electronic devices are considered in place of the conventional Si devices. Use of SiC raises the maximum practical operating junction temperature to well over 200°C, giving much greater thermal headroom between the chips and the coolant. In the first fabrication, a SiC Schottky barrier diode (SBD) replaces the Si pin diode and is paired with a Si-IGBT. Secondly, double-sided cooling is employed, in which the semiconductor chips are sandwiched between two substrate tiles. The tiles provide electrical connections to the top and the bottom of the chips, thus replacing the conventional wire bonded interconnect. Each tile assembly supports two IGBTs and two SBDs in a half-bridge configuration. Both sides of the assembly are cooled directly using a high-performance liquid impingement system. Specific features of the design ensure that thermo-mechanical stresses are controlled so as to achieve long thermal cycling life. A prototype 10 kW inverter module is described incorporating three half-bridge sandwich assemblies, gate drives, dc-link capacitance and two heat-exchangers. This achieves a volumetric power density of 30W/cm3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical looping combustion (CLC) is a means of combusting carbonaceous fuels, which inherently separates the greenhouse gas carbon dioxide from the remaining combustion products, and has the potential to be used for the production of high-purity hydrogen. Iron-based oxygen carriers for CLC have been subject to considerable work; however, there are issues regarding the lifespan of iron-based oxygen carriers over repeated cycles. In this work, haematite (Fe2O3) was reduced in an N2+CO+CO2 mixture within a fluidised bed at 850°C, and oxidised back to magnetite (Fe3O4) in a H2O+N2 mixture, with the subsequent yield of hydrogen during oxidation being of interest. Subsequent cycles started from Fe3O4 and two transition regimes were studied; Fe3O4↔Fe0.947O and Fe 3O4↔Fe. Particles were produced by mechanical mixing and co-precipitation. In the case of co-precipitated particles, Al was added such that the ratio of Fe:Al by weight was 9:1, and the final pH of the particles during precipitation was investigated for its subsequent effect on reactivity. This paper shows that co-precipitated particles containing additives such as Al may be able to achieve consistently high H2 yields when cycling between Fe3O4 and Fe, and that these yields are a function of the ratio of [CO2] to [CO] during reduction, where thermodynamic arguments suggest that the yield should be independent of this ratio. A striking feature with our materials was that particles made by mechanical mixing performed much better than those made by co-precipitation when cycling between Fe3O4 and Fe0.947O, but much worse than co-precipitated particles when cycling between Fe3O 4 and Fe.