2 resultados para dominant inheritance
em Cambridge University Engineering Department Publications Database
Resumo:
The function of plant genomes depends on chromatin marks such as the methylation of DNA and the post-translational modification of histones. Techniques for studying model plants such as Arabidopsis thaliana have enabled researchers to begin to uncover the pathways that establish and maintain chromatin modifications, and genomic studies are allowing the mapping of modifications such as DNA methylation on a genome-wide scale. Small RNAs seem to be important in determining the distribution of chromatin modifications, and RNA might also underlie the complex epigenetic interactions that occur between homologous sequences. Plants use these epigenetic silencing mechanisms extensively to control development and parent-of-origin imprinted gene expression.
Resumo:
We investigate the formation of microstructured polymer networks known as Breath Figure templated structures created by the presence of water vapour over evaporating polymer solutions. We use a highly controlled experimental approach to examine this dynamic and non-equilibrium process to uniquely compare pure solvent systems with polymer solutions and demonstrate using a combination of optical microscopy, focused ion-beam milling and SEM analysis that the porous polymer microstructure is completely controlled by the interfacial forces that exist between the water droplet and the solvent until a final drying dilation of the imprints. Water droplet contact angles are the same in the presence or absence of polymer and are independent of size for droplets above 5 μm. The polymer acts a spectator that serves to trap water droplets present at the air interface, and to transfer their shape into the polymer film. For the smallest pores, however, there are unexpected variations in the contact angle with pore size that are consistent with a possible contribution from line tension at these smaller dimensions. © The Royal Society of Chemistry.