6 resultados para divergent diagram of folds

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposed a novel control scheme for operating the Single Phase Brushless Doubly-Fed Machine (SPB) based on Stator-Flux-Oriented control algorithm. The SPB is a new type of Brushless Doubly-Fed Machine (BDFM) which shows a potential in applications which require adjustable speed such as Wind Power generation and speed adjustable Drive. The SPB can be applied to single-phase power system and the lower cost of the SPB makes the SPB suitable for low-rated power conversion applications. This paper develops the control scheme of the SPB with explicit mathematical analysis and block diagram of the controller. Experimental verification is also given. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deterministic organization of nanostructures into microscale geometries is essential for the development of materials with novel mechanical, optical, and surface properties. We demonstrate scalable fabrication of 3D corrugated carbon nanotube (CNT) microstructures, via an iterative sequence of vertically aligned CNT growth and capillary self-assembly. Vertical microbellows and tilted microcantilevers are created over large areas, and these structures can have thin walls with aspect ratios exceeding 100:1. We show these structures can be used as out-of-plane microsprings with compliance determined by the wall thickness and number of folds. © 2011 American Chemical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diagrammatic representations, such as process mapping and care pathways, have been often used for service evaluation and improvement in healthcare. While a broad range of diagrammatic representations exist, their application in healthcare has been very limited. There is a lack of understanding about how and which diagrams could be usable and useful to health workers. In this study, ten mental health workers were asked to discuss positive and negative issues around their service delivery using one or two diagrams of their choice out of seven different diagrams representing their service: care pathway diagram; organisation diagram; communication diagram; service blueprint; patient state transition diagram; free form diagram; geographic map. Their interactions with diagrams were video-taped for analysis. The patient state transition diagram was the most popular choice in spite of relatively low previous familiarity. The overall findings provided insight into a better use of diagrams in healthcare. © 2012 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a method to explore the configurational phase space of chemical systems. It is based on the nested sampling algorithm recently proposed by Skilling (AIP Conf. Proc. 2004, 395; J. Bayesian Anal. 2006, 1, 833) and allows us to explore the entire potential energy surface (PES) efficiently in an unbiased way. The algorithm has two parameters which directly control the trade-off between the resolution with which the space is explored and the computational cost. We demonstrate the use of nested sampling on Lennard-Jones (LJ) clusters. Nested sampling provides a straightforward approximation for the partition function; thus, evaluating expectation values of arbitrary smooth operators at arbitrary temperatures becomes a simple postprocessing step. Access to absolute free energies allows us to determine the temperature-density phase diagram for LJ cluster stability. Even for relatively small clusters, the efficiency gain over parallel tempering in calculating the heat capacity is an order of magnitude or more. Furthermore, by analyzing the topology of the resulting samples, we are able to visualize the PES in a new and illuminating way. We identify a discretely valued order parameter with basins and suprabasins of the PES, allowing a straightforward and unambiguous definition of macroscopic states of an atomistic system and the evaluation of the associated free energies.