4 resultados para differential scanning calorimeters

em Cambridge University Engineering Department Publications Database


Relevância:

80.00% 80.00%

Publicador:

Resumo:

New chiral compounds 3R-methylcyclohexanone derivatives were synthesized. These compounds were revealed to exhibit the mesomorphic behavior within rather wide temperature ranges. Types of formed mesophases and phase transition temperatures were determined by polarizing microscopy, differential scanning calorimetry and small angle scattering of X-ray. Mesomorphic properties of the new chiral compounds were compared with those for the chiral 2-arylidene derivatives of 3R,6R-3-methyl-6-isopropylcyclohexanone (d-isomenthone) studied earlier. Distinctions between these two types of compounds in an ability to form mesophases and also in twisting properties as chiral dopants in induced cholesteric mesophases are considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

(1R,4R)-2-(4-Hydroxybenzylidene)- and (1R,4R)-2-(4′-hydroxybiphenyl- 4-yl)methylene-p-menthan-3-ones were synthesized by condensation of (-)-menthone with O-tetrahydropyran-2-yl derivatives of 4-hydroxybenzaldehyde and 4′-hydroxy-4-formylbiphenyl, respectively, in a DMSO - base medium followed by the removal of the protective group. The reactions of these hydroxy derivatives with 4-alkylbenzoic, 4-alkyloxybenzoic, trans-4-alkylcyclohexane-4- carboxylic, and 4′-alkylbiphenyl-4-carboxylic acids afforded three series of new chiral esters. Compounds containing the arylidene moiety with three benzene rings were found to exhibit liquid-crystalline properties. The characteristic features of these compounds are discussed based on the results of studies by polarizing microscopy, differential scanning calorimetry, and small-angle X-ray scattering. It was found that the mesomorphic compounds under study can form a smectic A mesophase, twist grain boundary mesophases (TGBA), and blue phases in a wide temperature range. Upon dissolution of certain of chiral compounds in 4′-cyano-4-pentylbiphenyl, a rather high twisting power and the thermal stabilizing effect on mesophases were observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metallic silicides have been used as contact materials on source/drain and gate in metal-oxide semiconductor (MOS) structure for 40 years. Since the 65 nm technology node, NiSi is the preferred material for contact in microelectronic due to low resistivity, low thermal budget, and low Si consumption. Ni(Pt)Si with 10 at.% Pt is currently employed in recent technologies since Pt allows to stabilize NiSi at high temperature. The presence of Pt and the very low thickness (<10 nm) needed for the device contacts bring new concerns for actual devices. In this work, in situ techniques [X-ray diffraction (XRD), X-ray reflectivity (XRR), sheet resistance, differential scanning calorimetry (DSC)] were combined with atom probe tomography (APT) to study the formation mechanisms as well as the redistribution of dopants and alloy elements (Pt, Pd.) during the silicide formation. Phenomena like nucleation, lateral growth, interfacial reaction, diffusion, precipitation, and transient phase formation are investigated. The effect of alloy elements (Pt, Pd.) and dopants (As, B.) as well as stress and defects induced by the confinement in devices on the silicide formation mechanism and alloying element redistribution is examined. In particular APT has been performed for the three-dimensional (3D) analysis of MOSFET at the atomic scale. The advances in the understanding of the mechanisms of formation and redistribution are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this article was the determination of the degree of crystallinity of a series of heat-set poly(ethylene terephthalate) (PET) films and their study by thermomechanical analysis (TMA) in order to elucidate a peculiar behaviour that takes place around the glass transition region. For this purpose, amorphous cast Mylar films from DuPont were annealed at 115 °C for various periods of time. Four methods were used to study the crystallinity of the samples prepared: differential scanning calorimetry (DSC), density measurements (DM), wide-angle X-ray diffraction (WAXD), and Fourier transform infrared spectroscopy (FT-IR). From the results obtained, the following conclusions are drawn: amorphous PET Mylar films can be crystallized in a degree of about up to 30% after thermal treatment for 30 min (cold crystallization) above glass transition temperature. When these semicrystalline samples are subjected to TMA, they show a two step penetration of the probe into them, which decreases with the increase of the degree of crystallinity. The first step of penetration was attributed to the shrinkage of the amorphous or semicrystalline sample, which takes place on the glass transition temperature, while the second step was attributed to the continuous softening of the sample, and the reorganization of the matter which takes place on heating run due to cold crystallization. © 2008 Elsevier Ltd. All rights reserved.