15 resultados para differential cross-section
em Cambridge University Engineering Department Publications Database
Resumo:
To meet targeted reductions in CO 2 emissions by 2050, demand for metal must be cut, for example through the use of lightweight technologies. However, the efficient production of weight optimized components often requires new, more flexible forming processes. In this paper, a novel hot rolling process is presented for forming I-beams with variable cross-section, which are lighter than prismatic alternatives. First, the new process concept is presented and described. A detailed computational and experimental analysis is then conducted into the capabilities of the process. Results show that the process is capable of producing defect free I-beams with variations in web depth of 30-50%. A full analysis of the process then indicates the likely failure modes, and identifies a safe operating window. Finally, the implications of these results for producing lightweight beams are discussed. © 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper presents an analytical modeling technique for the simulation of long-range ultrasonic guided waves in structures. The model may be used to predict the displacement field in a prismatic structure arising from any excitation arrangement and may therefore be used as a tool to design new inspection systems. It is computationally efficient and relatively simple to implement, yet gives accuracy similar to finite element analysis and semi-analytical finite element analysis methods. The model has many potential applications; one example is the optimization of part-circumferential arrays where access to the full circumference of the pipe is restricted. The model has been successfully validated by comparison with finite element solutions. Experimental validation has also been carried out using an array of piezoelectric transducer elements to measure the displacement field arising from a single transducer element in an 88.9-mm-diameter pipe. Good agreement has been obtained between the two models and the experimental data.
Resumo:
BGCore is a software package for comprehensive computer simulation of nuclear reactor systems and their fuel cycles. The BGCore interfaces Monte Carlo particles transport code MCNP4C with a SARAF module - an independently developed code for calculating in-core fuel composition and spent fuel emissions following discharge. In BGCore system, depletion coupling methodology is based on the multi-group approach that significantly reduces computation time and allows tracking of large number of nuclides during calculations. In this study, burnup calculation capabilities of BGCore system were validated against well established and verified, computer codes for thermal and fast spectrum lattices. Very good agreement in k eigenvalue and nuclide densities prediction was observed for all cases under consideration. In addition, decay heat prediction capabilities of the BGCore system were benchmarked against the most recent edition of ANS Standard methodology for UO2 fuel decay power prediction in LWRs. It was found that the difference between ANS standard data and that predicted by the BGCore does not exceed 5%.
Resumo:
A process is presented for the forming of variable cross-section I-beams by hot rolling. Optimized I-beams with variable cross-section offer a significant weight advantage over prismatic beams. By tailoring the cross-section to the bending moment experienced within the beam, around 30% of the material can be saved compared to a standard section. Production of such beams by hot rolling would be advantageous, as It combines high volume capacity with high material yields. Through controlled variation of the roll gap during multiple passes, beams with a variable cross-section have been created using shaped rolls similar to those used for conventional I-beam rolling. The process was tested experimentally on a small scale rolling mill, using plasticine as the modelling material. These results were then compared to finite element simulations of individual stages of the process conducted using Abaqus/Standard. Results here show that the process can successfully form a beam with a variable depth web. The main failure modes of the process, and the limitations on the achievable variations In geometry are also presented. Finally, the question of whether or not optimal beam geometries can be created by this process Is discussed. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.
Resumo:
The shallow water equations are widely used in modelling environmental flows. Being a hyperbolic system of differential equations, they admit shocks that represent hydraulic jumps and bores. Although the water surface can be solved satisfactorily with the modern shock-capturing schemes, the predicted flow rate often suffers from imbalances where shocks occur, eg the mass conservation is violated by failing to maintain a constant discharge rate at every cross-section in a steady open channel flow. A total-variation-diminishing Lax-Wendroff scheme is developed, and used to demonstrate how to achieve an exact flux balance. The performance of the proposed methods is inspected through some test cases, which include 1- and 2-dimensional, flat and irregular bed scenarios. The proposed methods are shown to preserve the mass exactly, and can be easily extended to other shock-capturing models.
Resumo:
Coupled Monte Carlo depletion systems provide a versatile and an accurate tool for analyzing advanced thermal and fast reactor designs for a variety of fuel compositions and geometries. The main drawback of Monte Carlo-based systems is a long calculation time imposing significant restrictions on the complexity and amount of design-oriented calculations. This paper presents an alternative approach to interfacing the Monte Carlo and depletion modules aimed at addressing this problem. The main idea is to calculate the one-group cross sections for all relevant isotopes required by the depletion module in a separate module external to Monte Carlo calculations. Thus, the Monte Carlo module will produce the criticality and neutron spectrum only, without tallying of the individual isotope reaction rates. The onegroup cross section for all isotopes will be generated in a separate module by collapsing a universal multigroup (MG) cross-section library using the Monte Carlo calculated flux. Here, the term "universal" means that a single MG cross-section set will be applicable for all reactor systems and is independent of reactor characteristics such as a neutron spectrum; fuel composition; and fuel cell, assembly, and core geometries. This approach was originally proposed by Haeck et al. and implemented in the ALEPH code. Implementation of the proposed approach to Monte Carlo burnup interfacing was carried out through the BGCORE system. One-group cross sections generated by the BGCORE system were compared with those tallied directly by the MCNP code. Analysis of this comparison was carried out and led to the conclusion that in order to achieve the accuracy required for a reliable core and fuel cycle analysis, accounting for the background cross section (σ0) in the unresolved resonance energy region is essential. An extension of the one-group cross-section generation model was implemented and tested by tabulating and interpolating by a simplified σ0 model. A significant improvement of the one-group cross-section accuracy was demonstrated.