7 resultados para cytoskeletal proteins

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical forces generated by cells drive morphologic changes during development and can feedback to regulate cellular phenotypes. Because these phenomena typically occur within a 3-dimensional (3D) matrix in vivo, we used microelectromechanical systems (MEMS) technology to generate arrays of microtissues consisting of cells encapsulated within 3D micropatterned matrices. Microcantilevers were used to simultaneously constrain the remodeling of a collagen gel and to report forces generated during this process. By concurrently measuring forces and observing matrix remodeling at cellular length scales, we report an initial correlation and later decoupling between cellular contractile forces and changes in tissue morphology. Independently varying the mechanical stiffness of the cantilevers and collagen matrix revealed that cellular forces increased with boundary or matrix rigidity whereas levels of cytoskeletal and extracellular matrix (ECM) proteins correlated with levels of mechanical stress. By mapping these relationships between cellular and matrix mechanics, cellular forces, and protein expression onto a bio-chemo-mechanical model of microtissue contractility, we demonstrate how intratissue gradients of mechanical stress can emerge from collective cellular contractility and finally, how such gradients can be used to engineer protein composition and organization within a 3D tissue. Together, these findings highlight a complex and dynamic relationship between cellular forces, ECM remodeling, and cellular phenotype and describe a system to study and apply this relationship within engineered 3D microtissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the commonly used resins for immobilized metal affinity purification of polyhistidine-tagged recombinant proteins is TALON resin, a cobalt (II)--carboxymethylaspartate-based matrix linked to Sepharose CL-6B. Here, we show that TALON resin efficiently purifies the native form of Lac repressor, which represents the major contaminant when (His)(6)-tagged proteins are isolated from Escherichia coli host cells carrying the lacI(q) gene. Inspection of the crystal structure of the repressor suggests that three His residues (residues 163, 173, and 202) in each subunit of the tetramer are optimally spaced on an exposed face of the protein to allow interaction with Co(II). In addition to establishing a more efficient procedure for purification of the Lac repressor, these studies indicate that non-lacI(q)-based expression systems yield significantly purer preparations of recombinant polyhistidine-tagged proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a resistive-pulse technique to analyze molecular hybrids of single-wall carbon nanotubes (SWNTs) wrapped in either single-stranded DNA or protein. Electric fields confined in a glass capillary nanopore allow us to probe the physical size and surface properties of molecular hybrids at the single-molecule level. We find that the translocation duration of a macromolecular hybrid is determined by its hydrodynamic size and solution mobility. The event current reveals the effects of ion exclusion by the rod-shaped hybrids and possible effects due to temporary polarization of the SWNT core. Our results pave the way to direct sensing of small DNA or protein molecules in a large unmodified solid-state nanopore by using nanofilaments as carriers. © 2013 American Chemical Society.