201 resultados para cylinder wake

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reynolds averaged Navier-Stokes model performances in the stagnation and wake regions for turbulent flows with relatively large Lagrangian length scales (generally larger than the scale of geometrical features) approaching small cylinders (both square and circular) is explored. The effective cylinder (or wire) diameter based Reynolds number, ReW ≤ 2.5 × 103. The following turbulence models are considered: a mixing-length; standard Spalart and Allmaras (SA) and streamline curvature (and rotation) corrected SA (SARC); Secundov's νt-92; Secundov et al.'s two equation νt-L; Wolfshtein's k-l model; the Explicit Algebraic Stress Model (EASM) of Abid et al.; the cubic model of Craft et al.; various linear k-ε models including those with wall distance based damping functions; Menter SST, k-ω and Spalding's LVEL model. The use of differential equation distance functions (Poisson and Hamilton-Jacobi equation based) for palliative turbulence modeling purposes is explored. The performance of SA with these distance functions is also considered in the sharp convex geometry region of an airfoil trailing edge. For the cylinder, with ReW ≈ 2.5 × 103 the mixing length and k-l models give strong turbulence production in the wake region. However, in agreement with eddy viscosity estimates, the LVEL and Secundov νt-92 models show relatively little cylinder influence on turbulence. On the other hand, two equation models (as does the one equation SA) suggest the cylinder gives a strong turbulence deficit in the wake region. Also, for SA, an order or magnitude cylinder diameter decrease from ReW = 2500 to 250 surprisingly strengthens the cylinder's disruptive influence. Importantly, results for ReW ≪ 250 are virtually identical to those for ReW = 250 i.e. no matter how small the cylinder/wire its influence does not, as it should, vanish. Similar tests for the Launder-Sharma k-ε, Menter SST and k-ω show, in accordance with physical reality, the cylinder's influence diminishing albeit slowly with size. Results suggest distance functions palliate the SA model's erroneous trait and improve its predictive performance in wire wake regions. Also, results suggest that, along the stagnation line, such functions improve the SA, mixing length, k-l and LVEL results. For the airfoil, with SA, the larger Poisson distance function increases the wake region turbulence levels by just under 5%. © 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In HCCI engines, the Air/Fuel Ratio (AFR) and Residual Gas Fraction (RGF) are difficult to control during the SI-HCCI-SI transition, and this may result in incomplete combustion and/or high pressure raise rates. As a result, there may be undesirably high engine load fluctuations. The objectives of this work are to further understand this process and develop control methods to minimize these load fluctuations. This paper presents data on instantaneous AFR and RGF measurements, both taken by novel experimental techniques. The data provides an insight into the cyclic AFR and RGF fluctuations during the switch. These results suggest that the relatively slow change in the intake Manifold Air Pressure (MAP) and actuation time of the Variable Valve Timing (VVT) are the main causes of undesired AFR and RGF fluctuations, and hence an unacceptable Net IMEP (NIMEP) fluctuation. We also found large cylinder-to-cylinder AFR variations during the transition. Therefore, besides throttle opening control and VVT shifting, cyclic and individual cylinder fuel injection control is necessary to achieve a smooth transition. The control method was developed and implemented in a test engine, and the result was a considerably reduced NIMEP fluctuation during the mode switch. The instantaneous AFR and RGF measurements could furthermore be adopted to develop more sophisticated control methods for SI-HCCI-SI transitions. © 2010 SAE International.

Relevância:

20.00% 20.00%

Publicador: