26 resultados para critical state

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic moment of square planar melt processed YBa2Cu3O7-δ thick films is observed to scale with the cube of the sample width at 4.2 K, suggesting that current flow on the length scale of the film determines its magnetization at this temperature. A well-defined discontinuity in slope in the scaling data at a sample width corresponding to the average grain size (≈2 mm) implies the coexistence of distinct intra- and inter-grain critical current densities of 1.1 × 105Acm-2 and 0.4 × 105Acm-2 at 1 T and 4.2 K. The presence of a critical state in the films at 4.2T is confirmed by removing the central section from a specimen. The observed change in magnetic moment is in excellent agreement with theory for fields greater than ≈2 T. A critical state is not observed at 77 K which suggests that the grains are only weakly coupled at the higher temperature. © 1994.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The potential use of YBa2Cu3C7as an active component in a magnetic bearing is being investigated. Measurements are being made of the load bearing capacity and related stiffnesses in comparison to predictions from the critical state model. Although the load bearing capacity is high and increases with the square of the magnetic field trapped the stiffness is low. We report on a novel design concept to overcome this problem. © 1995 IEEE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Melt processed HTSC bulk samples usually show a high inhomogeneity. These inhomogeneities influence application-relevant properties such as the lévitation force or the trapped field. In this contribution a technique is presented which allows investigation of these inhomogeneous properties. The measurements are performed by scanning the sample surface with a small coil system and detecting the first and third harmonic of the inductive response. The critical current density jc is calculated from the measured signal using a modified critical state model. Jcdistributions yielded by this technique are shown. © 1997 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Following a tunnel excavation in low-permeability soil, it is commonly observed that the ground surface continues to settle and ground loading on the tunnel lining changes, as the pore pressures in the ground approach a new equilibrium condition. The monitored ground response following the tunnelling under St James's Park, London, shows that the mechanism of subsurface deformation is composed of three different zones: swelling, consolidation and rigid body movement. The swelling took place in a confined zone above the tunnel crown, extending vertically to approximately 5 m above it. On the sides of the tunnel, the consolidation of the soil occurred in the zone primarily within the tunnel horizon, from the shoulder to just beneath the invert, and extending laterally to a large offset from the tunnel centreline. Above these swelling and consolidation zones the soil moved downward as a rigid body. In this study, soil-fluid coupled three-dimensional finite element analyses were performed to simulate the mechanism of long-term ground response monitored at St James's Park. An advanced critical state soil model, which can simulate the behaviour of London Clay in both drained and undrained conditions, was adopted for the analyses. The analysis results are discussed and compared with the field monitoring data. It is found that the observed mechanism of long-term subsurface ground and tunnel lining response at St James's Park can be simulated accurately only when stiffness anisotropy, the variation of permeability between different units within the London Clay and non-uniform drainage conditions for the tunnel lining are considered. This has important implications for future prediction of the long-term behaviour of tunnels in clays.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Theoretical and experimental AC loss data on a superconducting pancake coil wound using second generation (2 G) conductors are presented. An anisotropic critical state model is used to calculate critical current and the AC losses of a superconducting pancake coil. In the coil there are two regions, the critical state region and the subcritical region. The model assumes that in the subcritical region the flux lines are parallel to the tape wide face. AC losses of the superconducting pancake coil are calculated using this model. Both calorimetric and electrical techniques were used to measure AC losses in the coil. The calorimetric method is based on measuring the boil-off rate of liquid nitrogen. The electric method used a compensation circuit to eliminate the inductive component to measure the loss voltage of the coil. The experimental results are consistent with the theoretical calculations thus validating the anisotropic critical state model for loss estimations in the superconducting pancake coil. © 2011 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gas hydrate is a crystalline solid found within marine and subpermafrost sediments. While the presence of hydrates can have a profound effect on sediment properties, the stress-strain behavior of hydrate-bearing sediments is poorly understood due to inherent limitations in laboratory testing. In this study, we use numerical simulations to improve our understanding of the mechanical behavior of hydrate-bearing sands. The hydrate mass is simulated as either small randomly distributed bonded grains or as "ripened hydrate" forming patchy saturation, whereby sediment clusters with 100% pore-filled hydrate saturation are distributed within a hydrate-free sediment. Simulation results reveal that reduced sand porosity and higher hydrate saturation cause an increase in stiffness, strength, and dilative tendency, and the critical state line shifts toward higher void ratio and higher shear strength. In particular, the critical state friction angle increases in sands with patchy saturation, while the apparent cohesion is affected the most when the hydrate mass is distributed in pores. Sediments with patchy hydrate distribution exhibit a slightly lower strength than sediments with randomly distributed hydrate. Finally, hydrate dissociation under drained conditions leads to volume contraction and/or stress relaxation, and pronounced shear strains can develop if the hydrate-bearing sand is subjected to deviatoric loading during dissociation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Simulation studies were conducted on the magnetization of (RE)BCO (RE-Ba-Cu-O, where RE represents a rare earth element) bulk superconductors using various split-coil arrangements by solving the critical state equation using the commercial software FlexPDE. A pair of coaxial coils of identical size is identified as an optimum arrangement for practical magnetization at 77K by the zero-field cooling technique. In general, the magnetization process is likely to be most effective when the outer radius of the coils lies between 100% and 50% of the sample radius. A relatively large coil pair is necessary for samples with either a smaller aspect ratio or larger values of J c0. Two different regimes of flux penetration are found to be involved in the magnetization process. For a sufficiently small sample, the penetration field is determined by flux propagation from beneath the coil to the centre of the sample; for a sufficiently large sample, the definitive propagation route is from beneath the coil to the periphery of the sample. Effective split-coil magnetization occurs only in the former regime, and both penetration regimes are completely different from that involved in the solenoidal-coil magnetization process. © 2012 IOP Publishing Ltd.