17 resultados para condutância longitudinal
em Cambridge University Engineering Department Publications Database
Resumo:
Thus far most studies of operational energy use of buildings fail to take a longitudinal view, or in other words, do not take into account how operational energy use changes during the lifetime of a building. However, such a view is important when predicting the impact of climate change, or for long term energy accounting purposes. This article presents an approach to deliver a longitudinal prediction of operational energy use. The work is based on the review of deterioration in thermal performance, building maintenance effects, and future climate change. The key issues are to estimate the service life expectancy and thermal performance degradation of building components while building maintenance and changing weather conditions are considered at the same time. Two examples are presented to demonstrate the application of the deterministic and stochastic approaches, respectively. The work concludes that longitudinal prediction of operational energy use is feasible, but the prediction will depend largely on the availability of extensive and reliable monitoring data. This premise is not met in most current buildings. © 2011 Elsevier Ltd.
Resumo:
Mode-locked and single-longitudinal-mode waveguide lasers, manufactured by femtosecond laser writing in Er-Yb-doped phosphate glasses, are presented. Transform-limited 1.6-ps pulses and a cw output power exceeding 50 mW have been obtained in the two regimes. © 2007 Optical Society of America.
Resumo:
Swaging is a cold working process involving plastic deformation of the work piece to change its shape. A swaged joint is a connection between two components whereby a swaging tool induces plastic deformation of the components at their junction to effectively bind them together. This is commonly used when welding or other standard joining techniques are not viable. Swaged joints can be found for example, in nuclear fuel assemblies to connect the edges of thin rectangular plates to a supporting structure or frame. The aim of this work is to find a model to describe the vibrational behaviour of a swaged joint and to estimate its strength in resisting a longitudinally applied load. The finite element method and various experimental rigs were used in order to find relationships between the natural frequencies of the plate, the joint stiffness and the force required to shift the plate against the restraining action of the swage connection. It is found that a swaged joint is dynamically equivalent to a simple support with the rotation elastically restrained and a small stiffness is enough to resist an important load. © 2011 Elsevier Ltd. All rights reserved.