7 resultados para conditional models

em Cambridge University Engineering Department Publications Database


Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The task of word-level confidence estimation (CE) for automatic speech recognition (ASR) systems stands to benefit from the combination of suitably defined input features from multiple information sources. However, the information sources of interest may not necessarily operate at the same level of granularity as the underlying ASR system. The research described here builds on previous work on confidence estimation for ASR systems using features extracted from word-level recognition lattices, by incorporating information at the sub-word level. Furthermore, the use of Conditional Random Fields (CRFs) with hidden states is investigated as a technique to combine information for word-level CE. Performance improvements are shown using the sub-word-level information in linear-chain CRFs with appropriately engineered feature functions, as well as when applying the hidden-state CRF model at the word level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently there has been interest in structured discriminative models for speech recognition. In these models sentence posteriors are directly modelled, given a set of features extracted from the observation sequence, and hypothesised word sequence. In previous work these discriminative models have been combined with features derived from generative models for noise-robust speech recognition for continuous digits. This paper extends this work to medium to large vocabulary tasks. The form of the score-space extracted using the generative models, and parameter tying of the discriminative model, are both discussed. Update formulae for both conditional maximum likelihood and minimum Bayes' risk training are described. Experimental results are presented on small and medium to large vocabulary noise-corrupted speech recognition tasks: AURORA 2 and 4. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the general problem of constructing nonparametric Bayesian models on infinite-dimensional random objects, such as functions, infinite graphs or infinite permutations. The problem has generated much interest in machine learning, where it is treated heuristically, but has not been studied in full generality in non-parametric Bayesian statistics, which tends to focus on models over probability distributions. Our approach applies a standard tool of stochastic process theory, the construction of stochastic processes from their finite-dimensional marginal distributions. The main contribution of the paper is a generalization of the classic Kolmogorov extension theorem to conditional probabilities. This extension allows a rigorous construction of nonparametric Bayesian models from systems of finite-dimensional, parametric Bayes equations. Using this approach, we show (i) how existence of a conjugate posterior for the nonparametric model can be guaranteed by choosing conjugate finite-dimensional models in the construction, (ii) how the mapping to the posterior parameters of the nonparametric model can be explicitly determined, and (iii) that the construction of conjugate models in essence requires the finite-dimensional models to be in the exponential family. As an application of our constructive framework, we derive a model on infinite permutations, the nonparametric Bayesian analogue of a model recently proposed for the analysis of rank data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obtaining accurate confidence measures for automatic speech recognition (ASR) transcriptions is an important task which stands to benefit from the use of multiple information sources. This paper investigates the application of conditional random field (CRF) models as a principled technique for combining multiple features from such sources. A novel method for combining suitably defined features is presented, allowing for confidence annotation using lattice-based features of hypotheses other than the lattice 1-best. The resulting framework is applied to different stages of a state-of-the-art large vocabulary speech recognition pipeline, and consistent improvements are shown over a sophisticated baseline system. Copyright © 2011 ISCA.