4 resultados para common long-run components

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of motor control, two hypotheses have been controversial: whether the brain acquires internal models that generate accurate motor commands, or whether the brain avoids this by using the viscoelasticity of musculoskeletal system. Recent observations on relatively low stiffness during trained movements support the existence of internal models. However, no study has revealed the decrease in viscoelasticity associated with learning that would imply improvement of internal models as well as synergy between the two hypothetical mechanisms. Previously observed decreases in electromyogram (EMG) might have other explanations, such as trajectory modifications that reduce joint torques. To circumvent such complications, we required strict trajectory control and examined only successful trials having identical trajectory and torque profiles. Subjects were asked to perform a hand movement in unison with a target moving along a specified and unusual trajectory, with shoulder and elbow in the horizontal plane at the shoulder level. To evaluate joint viscoelasticity during the learning of this movement, we proposed an index of muscle co-contraction around the joint (IMCJ). The IMCJ was defined as the summation of the absolute values of antagonistic muscle torques around the joint and computed from the linear relation between surface EMG and joint torque. The IMCJ during isometric contraction, as well as during movements, was confirmed to correlate well with joint stiffness estimated using the conventional method, i.e., applying mechanical perturbations. Accordingly, the IMCJ during the learning of the movement was computed for each joint of each trial using estimated EMG-torque relationship. At the same time, the performance error for each trial was specified as the root mean square of the distance between the target and hand at each time step over the entire trajectory. The time-series data of IMCJ and performance error were decomposed into long-term components that showed decreases in IMCJ in accordance with learning with little change in the trajectory and short-term interactions between the IMCJ and performance error. A cross-correlation analysis and impulse responses both suggested that higher IMCJs follow poor performances, and lower IMCJs follow good performances within a few successive trials. Our results support the hypothesis that viscoelasticity contributes more when internal models are inaccurate, while internal models contribute more after the completion of learning. It is demonstrated that the CNS regulates viscoelasticity on a short- and long-term basis depending on performance error and finally acquires smooth and accurate movements while maintaining stability during the entire learning process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A useful insight into managerial decision making can be found from simulation of business systems, but existing work on simulation of supply chain behaviour has largely considered non-competitive chains. Where competitive agents have been examined, they have generally had a simple structure and been used for fundamental examination of stability and equilibria rather than providing practical guidance to managers. In this paper, a new agent for the study of competitive supply chain network dynamics is proposed. The novel features of the agent include the ability to select between competing vendors, distribute orders preferentially among many customers, manage production and inventory, and determine price based on competitive behaviour. The structure of the agent is related to existing business models and sufficient details are provided to allow implementation. The agent is tested to demonstrate that it recreates the main results of the existing modelling and management literature on supply chain dynamics. A brief exploration of competitive dynamics is given to confirm that the proposed agent can respond to competition. The results demonstrate that overall profitability for a supply chain network is maximised when businesses operate collectively. It is possible for an individual business to achieve higher profits by adopting a more competitive stance, but the consequence of this is that the overall profitability of the network is reduced. The agent will be of use for a broad range of studies on the long-run effect of management decisions on their network of suppliers and customers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The desire to seek new and unfamiliar experiences is a fundamental behavioral tendency in humans and other species. In economic decision making, novelty seeking is often rational, insofar as uncertain options may prove valuable and advantageous in the long run. Here, we show that, even when the degree of perceptual familiarity of an option is unrelated to choice outcome, novelty nevertheless drives choice behavior. Using functional magnetic resonance imaging (fMRI), we show that this behavior is specifically associated with striatal activity, in a manner consistent with computational accounts of decision making under uncertainty. Furthermore, this activity predicts interindividual differences in susceptibility to novelty. These data indicate that the brain uses perceptual novelty to approximate choice uncertainty in decision making, which in certain contexts gives rise to a newly identified and quantifiable source of human irrationality.