13 resultados para collective consumption model
em Cambridge University Engineering Department Publications Database
Resumo:
Building integrated photovoltaics (BIPV) has potential of becoming the mainstream of renewable energy in the urban environment. BIPV has significant influence on the thermal performance of building envelope and changes radiation energy balance by adding or replacing conventional building elements in urban areas. PTEBU model was developed to evaluate the effect of photovoltaic (PV) system on the microclimate of urban canopy layer. PTEBU model consists of four sub-models: PV thermal model, PV electrical performance model, building energy consumption model, and urban canyon energy budget model. PTEBU model is forced with temperature, wind speed, and solar radiation above the roof level and incorporates detailed data of PV system and urban canyon in Tianjin, China. The simulation results show that PV roof and PV façade with ventilated air gap significantly change the building surface temperature and sensible heat flux density, but the air temperature of urban canyon with PV module varies little compared with the urban canyon of no PV. The PV module also changes the magnitude and pattern of diurnal variation of the storage heat flux and the net radiation for the urban canyon with PV increase slightly. The increase in the PV conversion efficiency not only improves the PV power output, but also reduces the urban canyon air temperature. © 2006.
Resumo:
Two-lane, "microscopic" (vehicle-by-vehicle) simulations of motorway traffic are developed using existing models and validated using measured data from the M25 motorway. An energy consumption model is also built in, which takes the logged trajectories of simulated vehicles as drive-cycles. The simulations are used to investigate the effects on motorway congestion and fuel consumption if "longer and/or heavier vehicles" (LHVs) were to be permitted in the UK. Baseline scenarios are simulated with traffic composed of cars, light goods vehicles and standard heavy goods vehicles (HGVs). A proportion of conventional articulated HGVs is then replaced by a smaller number of LHVs carrying the same total payload mass and volume. Four LHV configurations are investigated: an 18.75 m, 46 t longer semi-trailer (LST); 25.25 m, 50 t and 60 t B-doubles and a 34 m, 82 t A-double. Metrics for congestion, freight fleet energy consumption and car energy consumption are defined for comparing the scenarios. Finally, variation of take-up level and LHV engine power for the LST and A-double are investigated. It is concluded that: (a) LHVs should reduce congestion particularly in dense traffic, however, a low mean proportion of freight traffic on UK roads and low take-up levels will limit this effect to be almost negligible; (b) LHVs can significantly improve the energy efficiency of freight fleets, giving up to a 23% reduction in fleet energy consumption at high take-up levels; (c) the small reduction in congestion caused by LHVs could improve the fuel consumption of other road users by up to 3% in dense traffic, however in free-flowing traffic an opposite effect occurs due to higher vehicle speeds and aerodynamic losses; and (d) underpowered LHVs have potential to generate severe congestion, however current manufacturers' recommendations appear suitable. © 2013 IMechE.
Resumo:
This paper proposes a movement trajectory planning model, which is a maximum task achievement model in which signal-dependent noise is added to the movement command. In the proposed model, two optimization criteria are combined, maximum task achievement and minimum energy consumption. The proposed model has the feature that the end-point boundary conditions for position, velocity, and acceleration need not be prespecified. Consequently, the method can be applied not only to the simple point-to-point movement, but to any task. In the method in this paper, the hand trajectory is derived by a psychophysical experiment and a numerical experiment for the case in which the target is not stationary, but is a moving region. It is shown that the trajectory predicted from the minimum jerk model or the minimum torque change model differs considerably from the results of the psychophysical experiment. But the trajectory predicted from the maximum task achievement model shows good qualitative agreement with the hand trajectory obtained from the psychophysical experiment. © 2004 Wiley Periodicals, Inc.
Resumo:
A mathematical model is developed to predict the energy consumption of a heavy vehicle. It includes the important factors of heavy-vehicle energy consumption, namely engine and drivetrain performances, losses due to accessories, aerodynamic drag, rolling resistance, road gradients, and driver behaviour. Novel low-cost testing methods were developed to determine engine and drivetrain characteristics. A simple drive cycle was used to validate the model. The model is able to predict the fuel use for a 371 tractor-semitrailer vehicle over a 4 km drive cycle within 1 per cent. This paper demonstrates that accurate and reliable vehicle benchmarking and model parameter measurement can be achieved without expensive equipment overheads, e.g. engine and chassis dynamometers.
Resumo:
The diversity of non-domestic buildings at urban scale poses a number of difficulties to develop models for large scale analysis of the stock. This research proposes a probabilistic, engineering-based, bottom-up model to address these issues. In a recent study we classified London's non-domestic buildings based on the service they provide, such as offices, retail premise, and schools, and proposed the creation of one probabilistic representational model per building type. This paper investigates techniques for the development of such models. The representational model is a statistical surrogate of a dynamic energy simulation (ES) model. We first identify the main parameters affecting energy consumption in a particular building sector/type by using sampling-based global sensitivity analysis methods, and then generate statistical surrogate models of the dynamic ES model within the dominant model parameters. Given a sample of actual energy consumption for that sector, we use the surrogate model to infer the distribution of model parameters by inverse analysis. The inferred distributions of input parameters are able to quantify the relative benefits of alternative energy saving measures on an entire building sector with requisite quantification of uncertainties. Secondary school buildings are used for illustrating the application of this probabilistic method. © 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we investigate the behavior of pulse-coupled integrate-and-fire oscillators. Because the stability analysis of finite populations is intricate, we investigate stability results in the approximation of infinite populations. In addition to recovering known stability results of finite populations, we also obtain new stability results for infinite populations. In particular, under a weak coupling assumption, we solve for the continuum model a conjecture still prevailing in the finite dimensional case. © 2011 IEEE.
Resumo:
This paper proposes a design methodology to stabilize relative equilibria in a model of identical, steered particles moving in the plane at unit speed. Relative equilibria either correspond to parallel motion of all particles with fixed relative spacing or to circular motion of all particles around the same circle. Particles exchange relative information according to a communication graph that can be undirected or directed and time-invariant or time-varying. The emphasis of this paper is to show how previous results assuming all-to-all communication can be extended to a general communication framework. © 2008 IEEE.
Resumo:
This paper proposes a methodology to stabilize relative equilibria in a model of identical, steered particles moving in three-dimensional Euclidean space. Exploiting the Lie group structure of the resulting dynamical system, the stabilization problem is reduced to a consensus problem. We first derive the stabilizing control laws in the presence of all-to-all communication. Providing each agent with a consensus estimator, we then extend the results to a general setting that allows for unidirectional and time-varying communication topologies. © 2007 IEEE.
Resumo:
A description of the so called "particles with coupled oscillator dynamics" (PCOD) is presented which is used to model, analyze and synthesize collective motion. An oscillator model with spatial dynamics is presented to help describe how to design steering control laws while it is being used to study biological collectives. Lastly, both engineering and biological analysis were described.
Resumo:
This paper proposes a design methodology to stabilize isolated relative equilibria in a model of all-to-all coupled identical particles moving in the plane at unit speed. Isolated relative equilibria correspond to either parallel motion of all particles with fixed relative spacing or to circular motion of all particles with fixed relative phases. The stabilizing feedbacks derive from Lyapunov functions that prove exponential stability and suggest almost global convergence properties. The results of the paper provide a low-order parametric family of stabilizable collectives that offer a set of primitives for the design of higher-level tasks at the group level. © 2007 IEEE.
Resumo:
This paper addresses the design of mobile sensor networks for optimal data collection. The development is strongly motivated by the application to adaptive ocean sampling for an autonomous ocean observing and prediction system. A performance metric, used to derive optimal paths for the network of mobile sensors, defines the optimal data set as one which minimizes error in a model estimate of the sampled field. Feedback control laws are presented that stably coordinate sensors on structured tracks that have been optimized over a minimal set of parameters. Optimal, closed-loop solutions are computed in a number of low-dimensional cases to illustrate the methodology. Robustness of the performance to the influence of a steady flow field on relatively slow-moving mobile sensors is also explored © 2006 IEEE.
Resumo:
This paper presents a Lyapunov design for the stabilization of collective motion in a planar kinematic model of N particles moving at constant speed. We derive a control law that achieves asymptotic stability of the splay state formation, characterized by uniform rotation of N evenly spaced particles on a circle. In designing the control law, the particle headings are treated as a system of coupled phase oscillators. The coupling function which exponentially stabilizes the splay state of particle phases is combined with a decentralized beacon control law that stabilizes circular motion of the particles. © 2005 IEEE.