2 resultados para cloud computing resources
em Cambridge University Engineering Department Publications Database
Resumo:
Computer generated holography is an extremely demanding and complex task when it comes to providing realistic reconstructions with full parallax, occlusion, and shadowing. We present an algorithm designed for data-parallel computing on modern graphics processing units to alleviate the computational burden. We apply Gaussian interpolation to create a continuous surface representation from discrete input object points. The algorithm maintains a potential occluder list for each individual hologram plane sample to keep the number of visibility tests to a minimum.We experimented with two approximations that simplify and accelerate occlusion computation. It is observed that letting several neighboring hologramplane samples share visibility information on object points leads to significantly faster computation without causing noticeable artifacts in the reconstructed images. Computing a reduced sample set via nonuniform sampling is also found to be an effective acceleration technique. © 2009 Optical Society of America.
Resumo:
Vision trackers have been proposed as a promising alternative for tracking at large-scale, congested construction sites. They provide the location of a large number of entities in a camera view across frames. However, vision trackers provide only two-dimensional (2D) pixel coordinates, which are not adequate for construction applications. This paper proposes and validates a method that overcomes this limitation by employing stereo cameras and converting 2D pixel coordinates to three-dimensional (3D) metric coordinates. The proposed method consists of four steps: camera calibration, camera pose estimation, 2D tracking, and triangulation. Given that the method employs fixed, calibrated stereo cameras with a long baseline, appropriate algorithms are selected for each step. Once the first two steps reveal camera system parameters, the third step determines 2D pixel coordinates of entities in subsequent frames. The 2D coordinates are triangulated on the basis of the camera system parameters to obtain 3D coordinates. The methodology presented in this paper has been implemented and tested with data collected from a construction site. The results demonstrate the suitability of this method for on-site tracking purposes.