24 resultados para climate drivers
em Cambridge University Engineering Department Publications Database
Resumo:
This study investigates the key drivers affecting emission increases in terms of population growth, economic growth, industrial transformation, and energy use in six Chinese megacities: Beijing, Shanghai, Tianjin, Chongqing, Guangzhou, and Hong Kong. The six cities represent the most-developed regions in China and they have similar per capita carbon dioxide (CO 2) emissions as many developed countries. There is an urgent need to quantify the magnitude of each factor in driving the emissions changes in those cities so that a potential bottom-up climate mitigation policy design at the city and sectoral levels can be initiated. We adopt index decomposition analysis and present the results in both additive and multiplicative approaches to reveal the absolute and relative levels of each factor in driving emission changes during 1985-2007. Among all cities, economic effect and energy intensity effect have always been the two dominant factors contributing to the changes in carbon emissions. This study reveals that there are large variations in the ways driving forces contribute to emission levels in different cities and industrial sectors. © 2012 by Yale University.
Resumo:
Mitigation plans to combat climate change depend on the combined implementation of many abatement options, but the options interact. Published anthropogenic emissions inventories are disaggregated by gas, sector, country, or final energy form. This allows the assessment of novel energy supply options, but is insufficient for understanding how options for efficiency and demand reduction interact. A consistent framework for understanding the drivers of emissions is therefore developed, with a set of seven complete inventories reflecting all technical options for mitigation connected through lossless allocation matrices. The required data set is compiled and calculated from a wide range of industry, government, and academic reports. The framework is used to create a global Sankey diagram to relate human demand for services to anthropogenic emissions. The application of this framework is demonstrated through a prediction of per-capita emissions based on service demand in different countries, and through an example showing how the "technical potentials" of a set of separate mitigation options should be combined.