6 resultados para change theory
em Cambridge University Engineering Department Publications Database
Resumo:
We investigate the transient ventilation flow within a confined ventilated space, with high- and low-level openings, when the strength of a low-level point source of heat is changed instantaneously. The steady-flow regime in the space involves a turbulent buoyant plume, which rises from the point source to a well-mixed warm upper layer. The steady-state height of the interface between this layer and the lower layer of exterior fluid is independent of the heat flux, but the upper layer becomes progressively warmer with heat flux. New analogue laboratory experiments of the transient adjustment between steady states identify that if the heat flux is increased, the continuing plume propagates to the top of the room forming a new, warmer layer. This layer gradually deepens, and as the turbulent plume entrains fluid from the original warm layer, the original layer is gradually depleted and disappears, and a new steady state is established. In contrast, if the source buoyancy flux is decreased, the continuing plume is cooler than the original plume, so that on reaching the interface it is of intermediate density between the original warm layer and the external fluid. The plume supplies a new intermediate layer, which gradually deepens with the continuing flow. In turn, the original upper layer becomes depleted, both as a result of being vented through the upper opening of the space, but also due to some penetrative entrainment of this layer by the plume, as the plume overshoots the interface before falling back to supply the new intermediate layer. We develop quantitative models which are in good accord with our experimental data, by combining classical plume theory with models of the penetrative entrainment for the case of a decrease in heating. Typically, we find that the effect of penetrative entrainment on the density of the intruding layer is relatively weak, provided the change in source strength is sufficiently large. However, penetrative entrainment measurably increases the rate at which the depth of the draining layer decreases. We conclude with a discussion of the importance of these results for the control of naturally ventilated spaces.
Resumo:
In recent years, many industrial firms have been able to use roadmapping as an effective process methodology for projecting future technology and for coordinating technology planning and strategy. Firms potentially realize a number of benefits in deploying technology roadmapping (TRM) processes. Roadmaps provide information identifying which new technologies will meet firms' future product demands, allowing companies to leverage R&D investments through choosing appropriately out of a range of alternative technologies. Moreover, the roadmapping process serves an important communication tool helping to bring about consensus among roadmap developers, as well as between participants brought in during the development process, who may communicate their understanding of shared corporate goals through the roadmap. However, there are few conceptual accounts or case studies have made the argument that roadmapping processes may be used effectively as communication tools. This paper, therefore, seeks to elaborate a theoretical foundation for identifying the factors that must be considered in setting up a roadmap and for analyzing the effect of these factors on technology roadmap credibility as perceived by its users. Based on the survey results of 120 different R&D units, this empirical study found that firms need to explore further how they can enable frequent interactions between the TRM development team and TRM participants. A high level of interaction will improve the credibility of a TRM, with communication channels selected by the organization also positively affecting TRM credibility. © 2011 Elsevier Inc.
Resumo:
This paper discusses innovations in curriculum development in the Department of Engineering at the University of Cambridge as a participant in the Teaching for Learning Network (TFLN), a teaching and learning development initiative funded by the Cambridge-MIT Institute a pedagogic collaboration and brokerage network. A year-long research and development project investigated the practical experiences through which students traditionally explore engineering disciplines, apply and extend the knowledge gained in lectures and other settings, and begin to develop their professional expertise. The research project evaluated current practice in these sessions and developed an evidence-base to identify requirements for new activities, student support and staff development. The evidence collected included a novel student 'practice-value' survey highlighting effective practice and areas of concern, classroom observation of practicals, semi-structured interviews with staff, a student focus group and informal discussions with staff. Analysis of the data identified three potentially 'high-leverage' strategies for improvement: development of a more integrated teaching framework, within which practical work could be contextualised in relation to other learning; a more transparent and integrated conceptual framework where theory and practice were more closely linked; development of practical work more reflective of the complex problems facing professional engineers. This paper sets out key elements of the evidence collected and the changes that have been informed by this evidence and analysis, leading to the creation of a suite of integrated practical sessions carefully linked to other course elements and reinforcing central concepts in engineering, accompanied by a training and support programme for teaching staff.
Resumo:
This paper reflects on the motivation, method and effectiveness of teaching leadership and organisational change to graduate engineers. Delivering progress towards sustainable development requires engineers who are aware of pressing global issues (such as resource depletion, climate change, social inequity and an interdependent economy) since it is they who deliver the goods and services that underpin society within these constraints. They also must understand how to implement change in the organisations within which they will work. In recognition of this fact the Cambridge University MPhil in Engineering for Sustainable Development has focussed on educating engineers to become effective change agents in their professional field with the confidence to challenge orthodoxy in adopting traditional engineering solutions. This paper reflects on ten years of delivering a special module to review how teaching change management and leadership aspects of the programme have evolved and progressed over that time. As the students who embark on this professional practice have often extensive experience as practising engineers and scientists, many have already learned the limitations of their technical background when solving complex problems. Students often join the course recognising their need to broaden their knowledge of relevant cross-disciplinary skills. The programme offers an opportunity for these early to mid-career engineers to explore an ethical and value-based approach to bringing about effective change in their particular sectors and organisations. This is achieved through action learning assignments in combination with reflections on the theory of change to enable students to equip themselves with tools that help them to be effective in making their professional and personal life choices. This paper draws on feedback gathered from students during their participation on the programme and augments this with alumni reflections gathered some years after their graduation. These professionals are able to look back on their experience of the taught components and reflect on how they have been able to apply this key learning in their subsequent careers. Copyright © 2012 September.