6 resultados para certificate-based signature

em Cambridge University Engineering Department Publications Database


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents proof-certificate based sufficient conditions for the existence of Zeno behavior in hybrid systems near non-isolated Zeno equilibria. To establish these conditions, we first prove sufficient conditions for Zeno behavior in a special class of hybrid systems termed first quadrant interval hybrid systems. The proof-certificate sufficient conditions are then obtained through a collection of functions that effectively "reduce" a general hybrid system to a first quadrant interval hybrid system. This paper concludes with an application of these ideas to Lagrangian hybrid systems, resulting in easily verifiable sufficient conditions for Zeno behavior. © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At low mass flow rates axial compressors suffer from flow instabilities leading to stall and surge. The inception process of these instabilities has been widely researched in the past - primarily with the aim of predicting or averting stall onset. In recent times, attention has shifted to conditions well before stall and has focussed on the level of irregularity in the blade passing signature in the rotor tip region. In general, this irregularity increases in intensity as the flow rate through the compressor is reduced. Attempts have been made to develop stall warning/avoidance procedures based on the level of the flow irregularity, but little effort has been made to characterise the irregularity, or to understand its underlying causes. Work on this project has revealed for the first time that the increase in irregularity in the blade passing signature is highly dependent on both tip-clearance and eccentricity. In a compressor with small, uniform, tip-clearance, the increase in blade passing irregularity which accompanies a reduction in flow rate will be modest. If the tip-clearance is enlarged, however, there will be a sharp rise in irregularity at all circumferential locations. In a compressor with eccentric tip-clearance, the increase in irregularity will only occur in the part of the annulus where the tip-clearance is largest, regardless of the average clearance level. In this paper, some attention is also given to the question of whether this irregularity observed in the pre-stall flow field is due to random turbulence, or to some form of coherent flow structure. Detailed flow measurements reveal that the latter is the case. From these findings, it is clear that a stall warning system based on blade passing signature irregularity will not be viable in an aero-engine where tip-clearance size and eccentricity change during each flight cycle and over the life of the compressor. Copyright © 2011 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At low mass flow rates, axial compressors suffer from flow instabilities leading to stall and surge. The inception process of these instabilities has been widely researched in the past---primarily with the aim of predicting or averting stall onset. In recent times, attention has shifted to conditions well before stall and has focused on the level of irregularity in the blade passing signature in the rotor tip region. In general, the irregularity increases in intensity as the flow rate through the compressor is reduced. Attempts have been made to develop stall warning/avoidance procedures based on the level of flow irregularity, but little effort has been made to characterize the irregularity itself, or to understand its underlying cause. Work on this project has revealed for the first time that the increase in irregularity in the blade passing signature is highly dependent on both tip-clearance size and eccentricity. In a compressor with small, uniform, tip-clearance, the increase in blade passing irregularity that accompanies a reduction in flow rate will be modest. If the tip-clearance is enlarged, however, there will be a sharp rise in irregularity at all circumferential locations. In a compressor with eccentric tip-clearance, the increase in irregularity will only occur in the part of the annulus where the tip-clearance is largest, regardless of the average clearance level. In this paper, some attention is also given to the question of whether the irregularity observed in the prestall flow field is due to random turbulence or to some form of coherent flow structure. Detailed flow measurements reveal that the latter is the case. From these findings, it is clear that a stall warning system based on blade passing signature irregularity would be difficult to implement in an aero-engine where tip-clearance size and eccentricity change during each flight cycle and over the life of the compressor. © 2013 American Society of Mechanical Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emissions, fuel burn, and noise are the main drivers for innovative aircraft design. Embedded propulsion systems, such as for example used in hybrid-wing body aircraft, can offer fuel burn and noise reduction benefits but the impact of inlet flow distortion on the generation and propagation of turbomachinery noise has yet to be assessed. A novel approach is used to quantify the effects of non-uniform flow on the creation and propagation of multiple pure tone (MPT) noise. The ultimate goal is to conduct a parametric study of S-duct inlets to quantify the effects of inlet design parameters on the acoustic signature. The key challenge is that the effects of distortion transfer, noise source generation and propagation through the non-uniform flow field are inherently coupled such that a simultaneous computation of the aerodynamics and acoustics is required to capture the mechanisms at play. The technical approach is based on a body force description of the fan blade row that is able to capture the distortion transfer and the blade-to-blade flow variations that cause the MPT noise while reducing computational cost. A single, 3-D full-wheel CFD simulation, in which the Euler equations are solved to second-order spatial and temporal accuracy, simultaneously computes the MPT noise generation and its propagation in distorted inlet flow. A new method of producing the blade-to-blade variations in the body force field for MPT noise generation has been developed and validated. The numerical dissipation inherent to the solver is quantified and used to correct for non-physical attenuation in the far-field noise spectra. Source generation, acoustic propagation and acoustic energy transfer between modes is examined in detail. The new method is validated on NASA's Source Diagnostic Test fan and inlet, showing good agreement with experimental data for aerodynamic performance, acoustic source generation, and far-field noise spectra. The next steps involve the assessment of MPT noise in serpentine inlet ducts and the development of a reduced order formulation suitable for incorporation into NASA's ANOPP framework. © 2010 by Jeff Defoe, Alex Narkaj & Zoltan Spakovszky.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Planet bearings of wind turbine epicyclic gearboxes are considered as one of the most critical components due to their high failure rate. In order to develop effective vibration based detection algorithms for these bearings, a thorough understanding of their vibration signature is required. In this paper, we investigate the vibration behaviour of an epicyclic gearbox in the presence of a defective planet bearing both theoretically and experimentally. We also identify different sources of modulation sidebands using an analytical model which includes ring gear flexibility and planet bearing defects. The findings from this work will help engineers to develop more effective fault detection algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a chip-scale microbubble-based biosensing platform. An encapsulated microbubble oscillates acoustically in liquid when exposed to an ultrasound field with its resonant frequency set by shell parameters. Changes in the resonant frequency of the microbubble can be used to monitor analyte-binding events on the shell. A device concept is proposed where ultrasonic transducers are integrated within a microfluidic channel, inside which electrodes are patterned for differential measurements of microbubble impedance. This device enables simultaneous measurements of the acoustic and electrical response of the microbubble, from which both mechanical and electrical parameters can be extracted. These parameters are used to provide a signature of the analyte. This paper presents acoustic and electrical models of the microbubbles, with the effect of shell parameters being thoroughly discussed. © 2013 IEEE.