5 resultados para centromere antibody
em Cambridge University Engineering Department Publications Database
Resumo:
Antibody orientation and its antigen binding efficiency at interface are of particular interest in many immunoassays and biosensor applications. In this paper, spectroscopic ellipsometry (SE), neutron reflection (NR), and dual polarization interferometry (DPI) have been used to investigate interfacial assembly of the antibody [mouse monoclonal anti-human prostate-specific antigen (anti-hPSA)] at the silicon oxide/water interface and subsequent antigen binding. It was found that the mass density of antibody adsorbed at the interface increased with solution concentration and adsorption time while the antigen binding efficiency showed a steady decline with increasing antibody amount at the interface over the concentration range studied. The amount of antigen bound to the interfacial immobilized antibody reached a maximum when the surface-adsorbed amount of antibody was around 1.5 mg/m(2). This phenomenon is well interpreted by the interfacial structural packing or crowding. NR revealed that the Y-shaped antibody laid flat on the interface at low surface mass density with a thickness around 40 Å, equivalent to the short axial length of the antibody molecule. The loose packing of the antibody within this range resulted in better antigen binding efficiency, while the subsequent increase of surface-adsorbed amount led to the crowding or overlapping of antibody fragments, hence reducing the antigen binding due to the steric hindrance. In situ studies of antigen binding by both NR and DPI demonstrated that the antigen inserted into the antibody layer rather than forming an additional layer on the top. Stability assaying revealed that the antibody immobilized at the silica surface remained stable and active over the monitoring period of 4 months. These results are useful in forming a general understanding of antibody interfacial behavior and particularly relevant to the control of their activity and stability in biosensor development.
Resumo:
The specific recognition between monoclonal antibody (anti-human prostate-specific antigen, anti-hPSA) and its antigen (human prostate-specific antigen, hPSA) has promising applications in prostate cancer diagnostics and other biosensor applications. However, because of steric constraints associated with interfacial packing and molecular orientations, the binding efficiency is often very low. In this study, spectroscopic ellipsometry and neutron reflection have been used to investigate how solution pH, salt concentration and surface chemistry affect antibody adsorption and subsequent antigen binding. The adsorbed amount of antibody was found to vary with pH and the maximum adsorption occurred between pH 5 and 6, close to the isoelectric point of the antibody. By contrast, the highest antigen binding efficiency occurred close to the neutral pH. Increasing the ionic strength reduced antibody adsorbed amount at the silica-water interface but had little effect on antigen binding. Further studies of antibody adsorption on hydrophobic C8 (octyltrimethoxysilane) surface and chemical attachment of antibody on (3-mercaptopropyl)trimethoxysilane/4-maleimidobutyric acid N-hydroxysuccinimide ester-modified surface have also been undertaken. It was found that on all surfaces studied, the antibody predominantly adopted the 'flat on' orientation, and antigen-binding capabilities were comparable. The results indicate that antibody immobilization via appropriate physical adsorption can replace elaborate interfacial molecular engineering involving complex covalent attachments.
Resumo:
AIMS: To assess the occurrence of diagnostic delay in primary antibody deficiency in the period 1989-2002, since a similar study in 1989, and to assess the impact of UK national guidelines communicated in 1995. METHODS: A retrospective case note review was performed of 89 consecutive patients with antibody deficiency referred to a regional referral centre for clinical immunology in north west England and north Wales. The delay in diagnosis and the estimated resulting morbidity in terms of infections were assessed. RESULTS: Fifty six of the 89 patients experienced delay in diagnosis. The overall median delay was 2 years (mean, 4.4), resulting in substantial morbidity (equivalent to two major infections and one minor infection). This shows a moderate improvement since the previous study in 1989 and since the introduction of UK national guidelines in 1995. Respiratory infections are the most frequent presenting infections, and respiratory physicians the most common source of referral. CONCLUSIONS: There is still considerable delay in the diagnosis of primary antibody deficiency, but the data suggest an improvement in practice since the previous study in 1989 and the distribution of national guidelines in 1995.
Resumo:
The novelty of this study resides in the fabrication of a bio-sensing device, based on the surface acoustic wave (SAW) on a nanocrystalline ZnO film. The ZnO film was deposited using an rf magnetron sputtering at room temperature on silicon. The deposited films showed the c-axisoriented crystallite with grain size of ∼40 nm. The immunosensing device was fabricated using photolithographic protocols on the film. As a model biomolecular recognition and immunosensing, biospecific interaction between a 6-(2,4-dinitrophenyl) aminohexanoic acid (DNP) antigen and its antibody was employed, demonstrating the shifts of resonant frequencies on SAW immunosensing device. The device exhibited a linearity as a function of the antibody concentration in the range of 20∼20,000 ng/ml. © 2009 American Scientific Publishers. All rights reserved.
Resumo:
Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks.