113 resultados para central algorithm
em Cambridge University Engineering Department Publications Database
Resumo:
Displacement estimation is a key step in the evaluation of tissue elasticity by quasistatic strain imaging. An efficient approach may incorporate a tracking strategy whereby each estimate is initially obtained from its neighbours' displacements and then refined through a localized search. This increases the accuracy and reduces the computational expense compared with exhaustive search. However, simple tracking strategies fail when the target displacement map exhibits complex structure. For example, there may be discontinuities and regions of indeterminate displacement caused by decorrelation between the pre- and post-deformation radio frequency (RF) echo signals. This paper introduces a novel displacement tracking algorithm, with a search strategy guided by a data quality indicator. Comparisons with existing methods show that the proposed algorithm is more robust when the displacement distribution is challenging.
Resumo:
This paper introduces a new technique called species conservation for evolving parallel subpopulations. The technique is based on the concept of dividing the population into several species according to their similarity. Each of these species is built around a dominating individual called the species seed. Species seeds found in the current generation are saved (conserved) by moving them into the next generation. Our technique has proved to be very effective in finding multiple solutions of multimodal optimization problems. We demonstrate this by applying it to a set of test problems, including some problems known to be deceptive to genetic algorithms.
Resumo:
Thickness of the near-interface regions (NIR) and central bulk ohmic resistivity in lead lanthanum zirconate titanate ferroelectric thin films were investigated. A method to separate the low-resistive near-interface regions (NIRs) from the high-resistive central bulk region (CBR) in ferroelectric thin films was presented. Results showed that the thickness of the NIRs depended on the electrode materials in use and the CBR resistivity depended on the impurity doping levels.
Resumo:
Sequential Monte Carlo methods, also known as particle methods, are a widely used set of computational tools for inference in non-linear non-Gaussian state-space models. In many applications it may be necessary to compute the sensitivity, or derivative, of the optimal filter with respect to the static parameters of the state-space model; for instance, in order to obtain maximum likelihood model parameters of interest, or to compute the optimal controller in an optimal control problem. In Poyiadjis et al. [2011] an original particle algorithm to compute the filter derivative was proposed and it was shown using numerical examples that the particle estimate was numerically stable in the sense that it did not deteriorate over time. In this paper we substantiate this claim with a detailed theoretical study. Lp bounds and a central limit theorem for this particle approximation of the filter derivative are presented. It is further shown that under mixing conditions these Lp bounds and the asymptotic variance characterized by the central limit theorem are uniformly bounded with respect to the time index. We demon- strate the performance predicted by theory with several numerical examples. We also use the particle approximation of the filter derivative to perform online maximum likelihood parameter estimation for a stochastic volatility model.