11 resultados para cascode

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cascode circuits are useful for driving normally-on wide-bandgap devices, but the switching process must be properly understood to optimise their design. Little detailed consideration has previously been given to this. This paper proposes an idealised mathematical description of the cascode switching process, which is used to show that the stray inductance between the two devices plays a critical role in switching. This idealised model is used to propose methods for optimising cascode performance in different applications. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A SPICE simulation model of a novel cascode switch that combines a high voltage normally-on silicon carbide (SiC) junction field effect transistor (JFET) with a low voltage enhancement-mode gallium nitride field effect transistor (eGaN FET) has been developed, with the aim of optimising cascode switching performance. The effect of gate resistance on stability and switching losses is investigated and optimum values chosen. The effects of stray inductance on cascode switching performance are considered and the benefits of low inductance packaging discussed. The use of a positive JFET gate bias in a cascode switch is shown to reduce switching losses as well as reducing on-state losses. The findings of the simulation are used to produce a list of priorities for the design and layout of wide-bandgap cascode switches, relevant to both SiC and GaN high voltage devices. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The motivation for our work is to identify a space for silicon carbide (SiC) devices in the silicon (Si) world. This paper presents a detailed experimental investigation of the switching behaviour of silicon and silicon carbide transistors (a JFET and a cascode device comprising a Si-MOSFET and a SiC-JFET). The experimental method is based on a clamped inductive load chopper circuit that puts considerable stress on the device and increases the transient power dissipation. A precise comparison of switching behaviour of Si and SiC devices on similar terms is the novelty of our work. The cascode is found to be an attractive fast switching device, capable of operating in two different configurations whose switching equivalent circuits are proposed here. The effect of limited dv/dt of the Si-MOSFET on the switching of the SiC-JFET in a cascode is also critically analysed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper focuses on the PSpice model of SiC-JFET element inside a SiCED cascode device. The device model parameters are extracted from the I-V and C-V characterization curves. In order to validate the model, an inductive test rig circuit is designed and tested. The switching loss is estimated both using oscilloscope and calorimeter. These results are found to be in good agreement with the simulated results.