30 resultados para carbon fibres

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon fibres are a significant volume fraction of modern structural airframes. Embedded into polymer matrices, they provide significant strength and stiffness gains by unit weight compared with competing structural materials. Here we use the Raman G peak to assess the response of carbon fibres to the application of strain, with reference to the response of graphene itself. Our data highlight the predominance of the in-plane graphene properties in all graphitic structures examined. A universal master plot relating the G peak strain sensitivity to tensile modulus of all types of carbon fibres, as well as graphene, is presented. We derive a universal value of - average - phonon shift rate with axial stress of around -5ω0 -1 (cm -1 Mpa-1), where ω0 is the G peak position at zero stress for both graphene and carbon fibre with annular morphology. The use of this for stress measurements in a variety of applications is discussed. © 2011 Macmillan Publishers Limited. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report the growth of vertically-aligned nanotube forests, of up to 0.2 mm in height, on an 85:15 sp2:sp3 carbon support with Fe catalyst. This is achieved by purely-thermal chemical vapour deposition with the catalyst pretreated in inert environments. Pretreating the catalyst in a reducing atmosphere causes catalyst diffusion into the support and the growth of defective tubes. Other sp2:sp3 compositions, including graphite, tetrahedral amorphous carbon, and pure diamond, also lead to the growth of defective carbon morphologies. These results pave the way towards controlled growth of forests on carbon fibres. It could give rise to applications in enhanced fuel cell electrodes and better hierarchical carbon fibre-nanotube composites. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage. © 2014 AIP Publishing LLC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The overall aim of this work is to produce arrays of field emitting microguns, based on carbon nanotubes, which can be utilised in the manufacture of large area field emitting displays, parallel e-beam lithography systems and electron sources for high frequency amplifiers. This paper will describe the work carried out to produce patterned arrays of aligned multiwall carbon nanotubes (MWCNTs) using a dc plasma technique and a Ni catalyst. We will discuss how the density of the carbon nanotube/fibres can be varied by reducing the deposition yield through nickel interaction with a diffusion layer or by direct lithographic patterning of the Ni catalyst to precisely define the position of each nanotube/fibre. Details of the field emission behaviour of the different arrays of MWCNTS will also be presented. © 2002 Published by Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A preliminary study is presented of the relationship between the microstructural aspects of failure and the fracture energy G//1//C for cracking parallel to the fibres in long-fibre/thermoplastic matrix composites. Fracture energies are measured by a new technique, and fracture surfaces generated by the test are examined by scanning electron microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A preliminary study is presented of the relationship between the microstructural aspects of failure and the fracture energy G//l//C for cracking parallel to the fibres in long-fibre/thermoplastic matrix composites. Fracture energies are measured by a new technique, and fracture surfaces generated by the test are examined by scanning electron microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the use of near-field electrospinning (NFES) as a route to fabricate composite electrodes. Electrodes made of composite fibers of carbon nanotubes in polyethylene oxide (PEO) are formed via liquid deposition, with precise control over their configuration. The electromechanical properties of free-standing fibers and fibers deposited on elastic substrates are studied in detail. We then examine the elastic deformation limit of the resulting free-standing fibers and find, similarly to bulk PEO composites, that the plastic deformation onset is below 2% of tensile strain. In comparison, the apparent deformation limit is much improved when the fibers are integrated onto a stretchable, elastic substrate. It is hoped that the NFES fabrication protocol presented here can provide a platform to direct-write polymeric electrodes, and to integrate both stiff and soft electrodes onto a variety of polymeric substrates. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the discovery of Carbon Nanotubes (CNTs) by Iijima in 1991[1, 2], there has been an explosion of research into the physical and chemical properties of this novel material. CNT based biosensors can play an important role in amperometric, immunosensor and nucleic-acid sensing devices, e.g. for detection of life threatening biological agents in time of war or in terrorist attacks, saving life and money for the NHS. CNTs offer unique advantages in several areas, like high surfacevolume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and CNT based sensors generally have higher sensitivities and lower detection limit than conventional ones. In this review, recent advances in biosensors utilising carbon nanotubes and carbon nanotube fibres will be discussed. The synthesis methods, nanostructure approaches and current developments in biosensors using CNTs will be introduced in the first part. In the second part, the synthesis methods and up-to-date progress in CNT fibre biosensors will be reviewed. Finally, we briefly outline some exciting applications for CNT and CNT fibres which are being targeted. By harnessing the continual advancements in micro and nano- technology, the functionality and capability of CNT-based biosensors will be enhanced, thus expanding and enriching the possible applications that can be delivered by these devices. © 2012 Bentham Science Publishers. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, micro gas sensor was fabricated using indium oxide nanowire for effective gas detection and monitoring system. Indium oxide nanowire was grown using thermal CVD, and their structural properties were examined by the SEM, XRD and TEM. The electric properties for microdropped indium oxide nanowire device were measured, and gas response characteristics were examined for CO gas. Sensors showed high sensitivity and stability for CO gas. And with below 20 mw power consumption, 5 ppm CO could be detected.