8 resultados para carbon fibers
em Cambridge University Engineering Department Publications Database
Resumo:
Thermal-stable, conductive, and flexible carbon fabric (CF), which is composed of thin carbon fibers prepared by electrospinning, was used for the substrate of carbon nanotube (CNT) field emitter arrays. The field emitter arrays were prepared by chemical vapor deposition (CVD). The current density-electric field characteristics revealed that the CNT field emitter arrays on CF produced a higher current density at a lower turn-on voltage compared to ones on a Si substrate. This emitter integrated with a gate electrode based on hierarchy-structured carbon materials, CNTs on CF, can be used for light sources, displays, and other electronic devices. © 2009 Materials Research Society.
Resumo:
Since the discovery of Carbon Nanotubes (CNTs) by Iijima in 1991[1, 2], there has been an explosion of research into the physical and chemical properties of this novel material. CNT based biosensors can play an important role in amperometric, immunosensor and nucleic-acid sensing devices, e.g. for detection of life threatening biological agents in time of war or in terrorist attacks, saving life and money for the NHS. CNTs offer unique advantages in several areas, like high surfacevolume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and CNT based sensors generally have higher sensitivities and lower detection limit than conventional ones. In this review, recent advances in biosensors utilising carbon nanotubes and carbon nanotube fibres will be discussed. The synthesis methods, nanostructure approaches and current developments in biosensors using CNTs will be introduced in the first part. In the second part, the synthesis methods and up-to-date progress in CNT fibre biosensors will be reviewed. Finally, we briefly outline some exciting applications for CNT and CNT fibres which are being targeted. By harnessing the continual advancements in micro and nano- technology, the functionality and capability of CNT-based biosensors will be enhanced, thus expanding and enriching the possible applications that can be delivered by these devices. © 2012 Bentham Science Publishers. All rights reserved.
Resumo:
We review the current state of the polymer-carbon nanotube composites field. The article first covers key points in dispersion and stabilization of nanotubes in a polymer matrix, with particular attention paid to ultrasonic cavitation and shear mixing. We then focus on the emerging trends in nanocomposite actuators, in particular, photo-stimulated mechanical response. The magnitude and even the direction of this actuation critically depend on the degree of tube alignment in the matrix; in this context, we discuss the affine model predicting the upper bound of orientational order of nanotubes, induced by an imposed strain. We review how photo-actuation in nanocomposites depend on nanotube concentration, alignment and entanglement, and examine possible mechanisms that could lead to this effect. Finally, we discuss properties of pure carbon nanotube networks, in form of mats or fibers. These systems have no polymer matrix, yet demonstrate pronounced viscoelasticity and also the same photomechanical actuation as seen in polymer-based composites. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: Carbon nanotube (CNT) fiber directly spun from an aerogel has a unique, well-aligned nanostructure (nano-pore and nano-brush), and thus provides high electro-catalytic activity and strong interaction with glucose oxidase enzyme. It shows great potential as a microelectrode for electrochemical biosensors. RESULTS: Cyclic voltammogram results indicate that post-synthesis treatments have great influence on the electrocatalytic activity of CNT fibers. Raman spectroscopy and electrical conductivity tests suggest that fibers annealed at 250 °C remove most of the impurities without damaging the graphite-like structure. This leads to a nano-porous morphology on the surface and the highest conductivity value (1.1 × 10 5 S m -1). Two CNT fiber microelectrode designs were applied to enhance their electron transfer behaviour, and it was found that a design using a 30 nm gold coating is able to linearly cover human physiological glucose level between 2 and 30 mmol L -1. The design also leads to a low detection limit of 25 μmol L -1. CONCLUSIONS: The high performance of CNT fibers not only offers exceptional mechanical and electrical properties, but also provides a large surface area and electron transfer pathway. They consequently make excellent bioactive microelectrodes for glucose biosensing, especially for potential use in implantable devices. © 2011 Society of Chemical Industry.
Resumo:
We report the use of near-field electrospinning (NFES) as a route to fabricate composite electrodes. Electrodes made of composite fibers of multi-walled carbon nanotubes in polyethylene oxide (PEO) are formed via liquid deposition, with precise control over their configuration. The electromechanical properties of free-standing fibers and fibers deposited on elastic substrates are studied in detail. In particular, we examine the elastic deformation limit of the resulting free-standing fibers and find, similarly to bulk PEO composites, that the plastic deformation onset is below 2% of tensile strain. In comparison, the apparent deformation limit is much improved when the fibers are integrated onto a stretchable, elastic substrate. It is hoped that the NFES fabrication protocol presented here can provide a platform to direct-write polymeric electrodes, and to integrate both stiff and soft electrodes onto a variety of polymeric substrates.