18 resultados para calix[4]arenes, calix[8]arenes, self-assembly
em Cambridge University Engineering Department Publications Database
Resumo:
Hybrid nanostructured materials can exhibit different properties than their constituent components, and can enable decoupled engineering of energy conversion and transport functions. Novel means of building hybrid assemblies of crystalline C 60 and carbon nanotubes (CNTs) are presented, wherein aligned CNT films direct the crystallization and orientation of C 60 rods from solution. In these hybrid films, the C 60 rods are oriented parallel to the direction of the CNTs throughout the thickness of the film. High-resolution imaging shows that the crystals incorporate CNTs during growth, yet grazing-incidence X-ray diffraction (GIXD) shows that the crystal structure of the C 60 rods is not perturbed by the CNTs. Growth kinetics of the C 60 rods are enhanced 8-fold on CNTs compared to bare Si, emphasizing the importance of the aligned, porous morphology of the CNT films as well as the selective surface interactions between C 60 and CNTs. Finally, it is shown how hybrid C 60-CNT films can be integrated electrically and employed as UV detectors with a high photoconductive gain and a responsivity of 10 5 A W -1 at low biases (± 0.5 V). The finding that CNTs can induce rapid, directional crystallization of molecules from solution may have broader implications to the science and applications of crystal growth, such as for inorganic nanocrystals, proteins, and synthetic polymers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Surfaces coated with nanoscale filaments such as silicon nanowires and carbon nanotubes are potentially compelling for high-performance battery and capacitor electrodes, photovoltaics, electrical interconnects, substrates for engineered cell growth, dry adhesives, and other smart materials. However, many of these applications require a wet environment or involve wet processing during their synthesis. The capillary forces introduced by these wet environments can lead to undesirable aggregation of nanoscale filaments, but control of capillary forces can enable manipulation of the filaments into discrete aggregates and novel hierarchical structures. Recent studies suggest that the elastocapillary self-assembly of nanofilaments can be a versatile and scalable means to build complex and robust surface architectures. To enable a wider understanding and use of elastocapillary self-assembly as a fabrication technology, we give an overview of the underlying fundamentals and classify typical implementations and surface designs for nanowires, nanotubes, and nanopillars made from a wide variety of materials. Finally, we discuss exemplary applications and future opportunities to realize new engineered surfaces by the elastocapillary self-assembly of nanofilaments. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
In this article, we examine the phenomenon of single-crystal halide salt wire growth at the surface of porous materials. We report the use of a single-step casting technique with a supramolecular self-assembly gel matrix that upon drying leads to the growth of single-crystal halide (e.g., NaCl, KCl, and KI) nanowires with diameters ~130-200 nm. We demonstrate their formation using electron microscopy and electron-dispersive X-ray spectroscopy, showing that the supramolecular gel stabilizes the growth of these wires by facilitating a diffusion-driven base growth mechanism. Critically, we show that standard non-supramolecular gels are unable to facilitate nanowire growth. We further show that these nanowires can be grown by seeding, forming nanocrystal gardens. This study helps understand the possible prefunctionalization of membranes to stimulate ion-specific filters or salt efflorescence suppressors, while also providing a novel route to nanomaterial growth.
Resumo:
Eu(III), the last piece in the puzzle: Europium-induced self-assembly of ligands having a C(3)-symmetrical benzene-1,3,5-tricarboxamide core results in the formation of luminescent gels. Supramolecular polymers are formed through hydrogen bonding between the ligands. The polymers are then brought together into the gel assembly through the coordination of terpyridine ends by Eu(III) ions (blue dashed arrow: distance between two ligands in the strand direction).
Resumo:
Strong, artificial pinning centres are required in superconducting films of large thickness for power applications in high magnetic fields. One of the methods for the introduction of pinning centres in such films is substrate decoration, i.e., growing nanoscale islands of certain materials on the substrate prior to the deposition of the superconducting film. Two other methods are building up a layered distribution of a second phase and homogeneous incorporation of second phase inclusions from a compositional target. In this paper, we compare the effectiveness of these methods in terms of the type of the self-assembly of nanoparticles. The comparison is made over a large set of YBa2Cu3O7 films of thickness up to 6.6 μm deposited with Au, Ag, Pd, LaNiO3, PrBa2Cu 3O7, YBCO, BaZrO3 and Gd2Ba 4CuWOy nanoparticles. It is found that substrate-decoration self-assembly is able to provide higher critical current in low magnetic field than the incorporation of homogeneous second phase in the sample microstructure. By specific modification of substrate decoration we achieved the self-field critical current per centimetre of width of 896 A/cm at 77.3 K and 1620 A/cm at 65 K in a film of thickness of 4.8 μm. © 2010 IOP Publishing Ltd.